[1] Poon H, Domingos P. Sum-product networks:a new deep architecture[C]//Proceedings of 12th Conf on Uncertainty in Artificial Intelligence, Barcelona, Spain:AUAI, 2011:2551-2558.
[2] Peharz R. Foundations of sum-product networks for probabilistic modeling[D]. Graze:Medical University of Graz, 2015.
[3] Roth D. On the hardness of approximate reasoning[J]. Artificial Intelligence, 1996, 82:273-302.
[4] Peharz R, Geiger B, Pernkopf F. Greedy part-wise learning of sum-product networks[C]//Machine Learning and Knowledge Discovery in Databases, Berlin, German:Springer, 2013, 8189:612-627.
[5] Peharz R, Kapeller G, Mowlaee P, et al. Modeling speech with sum-product networks:application to bandwidth extension[C]//International Conference on Acoustics, Speech and Signal Processing, Piscataway, NJ:IEEE, 2014:3699-3703.
[6] Cheng W C, Kok S, Pham H V, et al. Language modeling with sum-product networks[C]//Interspeech, Singapore, 2014:2098-2102.
[7] Gens R, Domingos P. Learning the structure of sum-product networks[C]//Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA:ACM, 2013:873-880.
[8] Vergari A, Mauro N D, Esposito F. Simplifying, regularizing and strengthening sum-product network structure learning[C]//Proceedings of Machine Learning and Knowledge Discovery in Databases, Berlin, German:Springer, 2015:343-358.
[9] Rooshenas A, Lowd D. Learning sum-product networks with direct and indirect variable interactions[C]//International Conference on Machine Learning, Atlanta, GA, USA:ACM, 2014, 32:710-718.
[10] Zhao H, Melibari M, Poupart P. On the Relationship between Sum-Product Networks and Bayesian Networks[C]//Proceedings of International Conference on Machine Learning, Atlanta, GA, USA:ACM, 2015:116-124.
[11] Martens J, Medabalimi V. On the expressive efficiency of sum product networks[J]. Computer Science, 2014, 1:102-110.
[12] Peharz R, Tschiatschek S, Pernkopf F, et al. On theoretical properties of sum-product networks[J]. Journal of Machine Learning Research, 2015, 38:744-752.
[13] Zhao H, Poupart P, Gordon G. A unified approach for learning the parameters of sum-product networks[C]//Proceedings of the 29th Advances in Neural Information Processing Systems, Barcelona, Spain:MIT Press, 2016, 12:146-153.
[14] Dennis A, Ventura D. Learning the architecture of sum-product networks using clustering on varibles[C]//Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, USA:MIT Press, 2012:2033-2041.
[15] Adel T, Balduzzi D, Ghodsi A. Learning the structure of sum-product networks via an svd-based algorithm[C]//Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain:AUAI, 2015:32-41.
[16] Rashwan A, Zhao H, Poupart P. Online and distributed Bayesian moment matching for parameter learning in sum-product networks[C]//Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, Cadiz, Spain:JMLR, 2016:1469-1477.
[17] Nath A, Domingos P. Learning tractable probabilistic models for fault localization[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, New Orleans, LA, USA:AAAI, 2016:1294-1301.
[18] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. |