[1] 刘韬. 国外视频卫星发展研究[J]. 国际太空, 2014, 36(9):50-56. [2] 张过. 卫星视频处理与应用进展[J]. 应用科学学报, 2016, 34(4):361-370. [3] 朱厉洪, 回征, 任德锋, 等. 视频成像卫星发展现状与启示[J]. 卫星应用, 2015, 6(10):23-28. [4] 何胜皎. 视频序列中运动目标检测算法的研究[D].兰州:兰州理工大学, 2018. [5] 韩露. 基于航拍图像的目标检测系统设计与实现[D]. 北京:北京理工大学, 2015. [6] 孟琭, 杨旭. 目标跟踪算法综述[J]. 自动化学报, 2019, 45(7):1244-1260. [7] 葛宝义, 左宪章, 胡永江. 视觉目标跟踪方法研究综述[J]. 中国图象图形学报, 2018, 23(8):1091-1107. [8] 袁益琴. 遥感卫星视频图像车辆动态信息提取方法研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017. [9] Meng L F, Kerekes J P. Object tracking using high resolution satellite imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(1):146-152. [10] 吴佳奇,张过,汪韬阳,等. 结合运动平滑约束与灰度特征的卫星视频点目标跟踪[J]. 测绘学报, 2017, 46(9):1135-1146. [11] Du B, Sun Y J, Cai S H, et al. Object tracking in satellite videos by fusing the kernel correlation filter and the three-frame-difference algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2):168-172. [12] Du B, Cai S H, Wu C, et al. Object tracking in satellite videos based on a multiframe optical flow tracker[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(8):3043-3055. [13] Shao J, Du B, Wu C, et al. VCF:velocity correlation filter, towards space-borne satellite video tracking[C]//2018 IEEE International Conference on Multimedia and Expo(ICME), San Diego CA,USA:IEEE Press, 2018:1-6. [14] Barnich O, Van Droogenbroeck M. ViBE:a powerful random technique to estimate the background in video sequences[C]//2019 IEEE Internationale Conference on Acoustics, Speech and Signal Processing, Taiwan, China:IEEE Press, 2009:945-948. [15] Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//12th European Conference on Computer Vision, Florence, Italy:Springer, 2012, 7575(4):702-715. [16] 张文雅, 徐华中, 罗杰. 基于ViBe的复杂背景下的运动目标检测[J]. 计算机科学, 2017, 44(9):304-307. [17] 蒋晶晶, 安博文. 低空航拍视频中基于Vibe算法的船舶检测方法[J]. 微型机与应用, 2017, 36(10):44-47. [18] Henriques J F, Caseivo R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//European Conference on Computer Vision. Berlin, Germany:Springer, 2012:702-715. [19] Zhang K H, Zhang L, Yang M H. Real-time compressive tracking[C]//12th European Conference on Computer Vision, Florence, Italy:Springer, 2012, 7574(3):864-877. [20] Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77:125-141. [21] Sevilla-Lara L, Learned-Miller E. Distribution fields for tracking[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA:IEEE, 2012:1910-1917. [22] Wu Y, Shen B, Ling H B. Online robust image alignment via iterative convex optimization[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA:IEEE, 2012:1808-1814. [23] Jia X, Lu H C, Yang M H. Visual tracking via adaptive structural local sparse appearance model[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA:IEEE, 2012:1822-1829. [24] Bao C L, Wu Y, Ling H B, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA:IEEE, 2012:1830-1837. [25] Zhang T Z, Ghanem B, Liu S, et al. Robust visual tracking via multi-task sparse learning[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA:IEEE, 2012:2042-2049. [26] Zhong W, Lu H C, Yang M H. Robust object tracking via sparsity-based collaborative model[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA:IEEE, 2012:1838-1845. [27] Oron S, Bar-Hillel A, Levi D, et al. Locally orderless tracking[J]. International Journal of Computer Vision, 2015, 111(2):213-228. |