[1] 赵英时.遥感应用分析原理与方法[M]. 北京:科学出版社, 2003: 38. [2] Lowe D G. Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004, 60(2): 91-110. DOI:10.1023/b:visi.0000029664.99615.94. [3] 王峰,尤红建,傅兴玉,等.应用于多源SAR图像匹配的级联SIFT算法[J].电子学报, 2016, 44(3): 548-554. DOI:10.3969/j.issn.0372-2112.2016.03.008. [4] 陈梦婷,闫冬梅,王刚.基于Harris角点和SIFT描述符的高分辨率遥感影像匹配算法[J].中国图象图形学报, 2012, 17(11): 1453-1459. [5] Bay H,Tuytelaars T,Van G L. SURF:speeded up robust features [C]//European Conference on Computer Vision-ECCV 2006.Springer, 2006: 404-417. DOI:10.1007/11744023-32. [6] 罗天健,刘秉瀚.融合特征的快速SURF配准算法[J].中国图象图形学报, 2015, 20(1): 95-103. DOI:10.11834/jig.20150110. [7] 孙越,王宏琦,李峰,等.面向变化检测的遥感影像弹性配准方法[J].武汉大学学报 ·信息科学版, 2018, 43(1): 53-59. DOI:10.13203/j.whugis20150510. [8] Rosten E,Drummond T. Machine learning for high-speed corner detection [C]//European Conference on Computer Vision-ECCV 2006.Springer, 2006: 430-443. DOI:10.1007/11744023_34. [9] Calonder M, Lepetit V, Strecha C, et al. BRIEF:Binary Robust Independent Elementary Features [C]//European Conference on Computer Vision-ECCV 2010. Springer, 2010: 778-792. DOI:10.1007/978-3-642-15561-1_56. [10] Ke Y,Sukthankar R. PCA-SIFT:a more distinctive representation for local image descriptors [C]//IEEE Conference on Computer Vision and Pattern Recognition-CVPR 2004. June 27-July 2, 2004, Washington, DC, USA. IEEE, 2004: 511-517. DOI:10.1109/CVPR.2004.1315206. [11] Rublee E,Rabaud V,Konolige K,et al. ORB: an efficient alternative to SIFT or SURF [C]// 2011 IEEE International Conference on Computer Vision. November 6-13, 2011, Barcelona, Spain. IEEE, 2011: 2564-2571. DOI:10.1109/ICCV.2011.6126544. [12] Leutenegger S,Chli M,Siegwart R Y. Brisk: Binary robust invariant scalable keypoints [C]// 2011 IEEE International Conference on Computer Vision. November 6-13, 2011, Barcelona, Spain. IEEE, 2011: 2548-2555. DOI:10.1109/ICCV.2011.6126542. [13] Alahi A,Ortiz R,Vandergheynst P. FREAK: Fast retina keypoint [C]// 2012 IEEE Conference on Computer Vision and Pattern Recognition June 16-21, 2012, Providence, RI, USA. IEEE, 2012: 510-517. DOI:10.1109/CVPR.2012.6247715. [14] 许允喜,陈方.局部图像描述符最新研究进展[J].中国图象图形学报, 2015, 20(9): 1133-1150. DOI:10.11834/jig.20150901. [15] 冯文灏,商浩亮,侯文广.影像的数字畸变模型[J].武汉大学学报 ·信息科学版, 2006, 31(2):99-103. DOI:10.3969/j.issn.1671-8860.2006.02.002. [16] 冯文灏.近景摄影测量:物体外形与运动状态的摄影法测定[M].武汉:武汉大学出版社, 2002: 116-142. [17] 闫敬文,王宏志,林哲,等.基于改进SURF的遥感图像目标识别[J].扬州大学学报(自然科学版), 2018, 21(3): 74-78. DOI:10.19411/j.1007-824x.2018.03.016. [18] 董强,刘晶红,周前飞.用于遥感图像拼接的改进SURF算法[J].吉林大学学报(工学版), 2017, 47(5): 1644-1652. DOI:10.13229/j.cnki.jdxbgxb201705042. [19] Hossein-Nejad Z, Nasri M. An adaptive image registration method based on SIFT features and RANSAC transform[J].Computers & Electrical Engineering, 2016, 62:1-14. DOI:10.1016/j.compeleceng.2016.11.034. [20] 迟英朋,刘畅.一种适用于SAR图像配准的改进SIFT算法[J].中国科学院大学学报, 2019, 36(2): 259-266. DOI:10.7523/j.issn.2095-6134.2019.02.014. [21] Chum O,Matas J. Matching with PROSAC: progressive sample consensus [C]// 2005 IEEE Conference on Computer Vision and Pattern Recognition. June 20-25, 2005, San Diego, CA, USA. IEEE, 2005: 220-226. DOI:10.1109/CVPR.2005.221. [22] Zhao P P, Ding D R, Wang Y X, et al. An improved GMS-PROSAC algorithm for image mismatch elimination[J]. Systems Science & Control Engineering, 2018, 6(1): 220-229. DOI:10.1080/21642583.2018.1477635. [23] 李振宇,田源,陈方杰,等.基于改进ORB和PROSAC的无人机航拍图像拼接算法[J].激光与光电子学进展, 2019, 56(23): 91-99. DOI:10.3788/LOP56.231003. [24] 产叶林,胡新平.基于FAST和SURF的特征点快速匹配算法[J].计算机工程与设计, 2019, 40(12): 3500-3504. DOI:10.16208/j.issn1000-7024.2019.12.023. |