[1] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J].Communications of the ACM, 2017,60(6):84-90.DOI:10.1145/3065386. [2] Taigman Y, Yang M, Ranzato M, et al. DeepFace:closing the gap to human-level performance in face verification//2014 IEEE Conference on Computer Vision and Pattern Recognition. June 23-28, 2014, Columbus, OH, USA. IEEE, 2014:1701-1708.DOI:10.1109/CVPR.2014.220. [3] 江璐,赵彤,吴敏.基于深度卷积神经网络的指纹纹型分类算法[J].中国科学院大学学报, 2016, 33(6):808-814.DOI:10.7523/j.issn.2095-6134.2016.06.013. [4] Xu L L, Neufeld J, Larson B, et al. Maximum margin clustering//Advances in Neural Information Processing Systems 17(NIPS 2004). 2005:1537-1544. [5] Krause A, Perona P, Gomes R G. Discriminative clustering by regularized information maximization//Advances in Neural Information Processing Systems 23(NIPS 2010). 2010:775-783. [6] Springenberg J T. Unsupervised and semi-supervised learning with categorical generative adversarial networks. ArXiv preprint, arXiv:1511.06390.(2016-04-30). https://arxiv.org/abs/1511.06390. [7] 宋旭鸣,沈逸飞,石远明.基于深度学习的智能移动边缘网络缓存[J].中国科学院大学学报, 2020,37(1):128-135.DOI:10.7523/j.issn.2095-6134.2020.01.015. [8] 田玮,朱廷劭.基于深度学习的微博用户自杀风险预测[J].中国科学院大学学报, 2018, 35(1):131-136.DOI:10.7523/j.issn.2095-6134.2018.01.018. [9] 杨建斌,张卫强,刘加.深度神经网络自适应中基于身份认证向量的归一化方法[J].中国科学院大学学报, 2017, 34(5):633-639.DOI:10.7523/j.issn.2095-6134.2017.05.014. [10] Salakhutdinov R, Hinton G. Deep boltzmann machines[J].Journal of Machine Learning Research, 2009,5:448-455. [11] Goodfellow I, Mirza M, Courville A, et al. Multi-prediction deep Boltzmann machines//Advances in Neural Information Processing Systems 26(NIPS 2013). 2013:548-556. [12] Bengio Y, Laufer E, Alain G, et al. Deep generative stochastic networks trainable by backprop//Proceedings of the 31st International Conference on Machine Learning, PMLR, 2014,32(2):226-234. [13] Kingma D P, Mohamed S, Rezende D J, et al. Semi-supervised learning with deep generative models//Advances in Neural Information Processing Systems 27(NIPS 2014). 2014:3581-3589. [14] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.DOI:10.1126/science.1127647. [15] Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders//Proceedings of the 25th International Conference on Machine Learning (ICML). 2008:1096-1103.DOI:10.1145/1390156.1390294. [16] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets//Advances in Neural Information Processing Systems 27(NIPS 2014). 2014:2672-2680. [17] Chen X, Duan Y, Houthooft R, et al. InfoGAN:interpretable representation learning by information maximizing generative adversarial nets//Advances in Neural Information Processing Systems 29(NIPS 2016). 2016:2172-2180. [18] LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4):541-551.DOI:10.1162/neco.1989.1.4.541. [19] Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images. Computer Science Department, University of Toronto, Tech. 2009. [20] Li C X, Xu T, Zhu J, et al. Triple generative adversarial nets//Advances in Neural Information Processing Systems 30(NIPS 2017). 2017:4088-4098. [21] Wu S, Deng G C, Li J C, et al. Enhancing TripleGAN for semi-supervised conditional instance synthesis and classification//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2019:10083-10092.DOI:10.1109/CVPR.2019.01033. [22] Poole B, Ozair S, van der Oord A, et al. On variational bounds of mutual information//Proceedings of the 36th International Conference on Machine Learning, PMLR.2019,97:5171-5180. [23] Grandvalet Y, Bengio Y. Semi-supervised learning by entropy minimization//Advances in Neural Information Processing Systems 17(NIPS 2004). 2005:529-536. [24] Spurr A, Aksan E, Hilliges O. Guiding InfoGAN with semi-supervision//Joint European Conference on Machine Learning and Knowledge Discovery in Databases. ECML PKDD, 2017:119134.DOI:10.1007/978-3-319-71249-9_8. [25] Heusel M, Ramsauer H, Unterthiner T, et al. Gans trained by a two time-scale update rule converge to a local nash equilibrium//Advances in Neural Information Processing Systems 30(NIPS 2017). 2017:6626-6637. [26] Salimans T, Goodfellow I, Zaremba W, et al. Improved techniques for training GANs//Advances in Neural Information Processing Systems 29(NIPS). 2016:2234-2242. [27] Xiao H, Rasul K, Vollgraf R. Fashion-MNIST:a novel image dataset for benchmarking machine learning algorithms. ArXiv Preprint, arXiv:1708.07747.(2017-09-15). https://arxiv.org/abs/1708.07747. |