[1] Chirikov B V. A universal instability of many-dimensional oscillator systems[J]. Physics Reports, 1979, 52(5):263-379. DOI:10.1016/0370-1573(79)90023-1. [2] Izrailev F M. Simple models of quantum chaos:spectrum and eigenfunctions[J]. Physics Reports, 1990, 196(5/6):299-392. DOI:10.1016/0370-1573(90)90067-C. [3] Casati G, Chirikov B V, Izraelev F M, et al. Stochastic behavior of a quantum pendulum under a periodic perturbation//Stochastic Behavior in Classical and Quantum Hamiltonian Systems, 1979:334-352. DOI:10.1007/BFb0021757. [4] Fishman S, Grempel D R,Prange R E. Chaos, quantum recurrences, and Anderson localization[J]. Physical Review Letters, 1982, 49(8):509-512. DOI:10.1103/physrevlett.49.509. [5] Shepelyansky D L. Some statistical properties of simple classically stochastic quantum systems[J]. Physica D:Nonlinear Phenomena, 1983, 8(1/2):208-222. DOI:10.1016/0167-2789(83)90318-4. [6] Casati G, I Guarneri I, Shepelyansky D L. Anderson transition in a one-dimensional system with three incommensurate frequencies[J]. Physical Review Letters, 1989, 62(4):345-348. DOI:10.1103/PhysRevLett.62.345. [7] Scharf R. Kicked rotator for a spin-1/2 particle[J]. Journal of Physics A:Mathematical and General, 1989, 22(19):4223-4242. DOI:10.1088/0305-4470/22/19/016. [8] Thaha M, Blümel R. Nonuniversality of the localization length in a quantum chaotic system[J]. Physical Review Letters, 1994, 72(1):72-75. DOI:10.1103/PhysRevLett.72.72. [9] Mašovi ć D R, Tan ći c'A R. The tight-binding model corresponding to the quantum kicked rotor for a spin-1/2 particle in the magnetic field[J]. Physics Letters A, 1994, 191(5/6):384-388. DOI:10.1016/0375-9601(94)90790-0. [10] Ossipov A, Basko D M, Kravtsov V E. A super-Ohmic energy absorption in driven quantum chaotic systems[J]. The European Physical Journal B, 2004, 42(4):457-460. DOI:10.1140/epjb/e2005-00002-2. [11] Bardarson J H, Tworzydło J,Beenakker C W J. Stroboscopic model of transport through a quantum dot with spin-orbit scattering[J]. Physical Review. B, 2005, 72(23):235305. DOI:10.1103/physrevb.72.235305. [12] Bardarson J H, Adagideli I, Jacquod P. Mesoscopic spin hall effect[J]. Physical Review Letters, 2007,98(19):196601. DOI:10.1103/PhysRevLett.98.196601. [13] Chen Y, Tian C S. Planck's quantum-driven integer quantum hall Effect in chaos[J]. Physical Review Letters, 2014, 113(21):216802. DOI:10.1103/PhysRevLett.113.216802. [14] Tian C S, Chen Y Wang J. Emergence of integer quantum Hall effect from chaos[J]. Physical Review B, 2016, 93(7):075403. DOI:10.1103/physrevb.93.075403. [15] Dahlhaus J P, Edge J M, Tworzydło J, et al. Quantum Hall effect in a one-dimensional dynamical system[J]. Physical Review B, 2011, 84(11):115133. DOI:10.1103/physrevb.84.115133. [16] Qi X L, Wu Y S, Zhang S C. Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors[J]. Physical Review B, 2006, 74(8):085308. DOI:10.1103/physrevb.74.085308. [17] Grempel D R, Prange R E Fishman S. Quantum dynamics of a nonintegrable system[J]. Physical Review A, 1984, 29(4):1639-1647. DOI:10.1103/physreva.29.1639. [18] Borgonovi F, Shepelyansky D L. Particle propagation in a random and quasi-periodic potential[J]. Physica D:Nonlinear Phenomena, 1997, 109(1/2):24-31. DOI:10.1016/S0167-2789(97)00155-3. [19] Tian C S, Altland A, Garst M. Theory of the Anderson transition in the quasiperiodic kicked rotor[J]. Physical Review Letters, 2011, 107(7):074101. DOI:10.1103/physrevlett.107.074101. [20] Wang J, Tian C S, Altland A. Unconventional quantum criticality in the kicked rotor[J]. Physical Review B, 2014, 89(19):195105. DOI:10.1103/physrevb.89.195105. [21] Chalker J T, Coddington P D. Percolation, quantum tunnelling and the integer Hall effect[J]. Journal of Physics C:Solid State Physics, 1988, 21(14):2665-2679. DOI:10.1088/0022-3719/21/14/008. [22] Huckestein B. Scaling theory of the integer quantum Hall effect[J]. Review of Modern Physics, 1995, 67(2):357-396. DOI:10.1103/revmodphys.67.357. [23] Slevin K, Ohtsuki T. Critical exponent for the quantum Hall transition[J]. Physical Review B, 2009, 80(4):041304. DOI:10.1103/physrevb.80.041304. |