[1] Klein T, Walther T. Oil price volatility forecast with mixture memory GARCH[J]. Energy Economics, 2016, 58:46-58.DOI:10.1016/j.eneco.2016.06.004. [2] Baumeister C, Guérin P, Kilian L. Do high-frequency financial data help forecast oil prices? The MIDAS touch at work[J]. International Journal of Forecasting, 2015, 31(2):238-252.DOI:10.1016/j.ijforecast.2014.06.005. [3] Xiang Y, Zhuang X H. Application of ARIMA model in short-term prediction of international crude oil price[J]. Advanced Materials Research, 2013, 798/799:979-982.DOI:10.4028/www.scientific.net/amr.798-799.979. [4] Hu J W S, Hu Y C, Lin R R W. Applying neural networks to prices prediction of crude oil futures[J]. Mathematical Problems in Engineering, 2012, 2012:1-12.DOI:10.1155/2012/959040. [5] Kristjanpoller W, Minutolo M C. Forecasting volatility of oil price using an artificial neural network-GARCH model[J]. Expert Systems With Applications, 2016, 65:233-241.DOI:10.1016/j.eswa.2016.08.045. [6] Elman J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2):179-211.DOI:10.1016/0364-0213(90)90002-E. [7] Jordan M I. Serial order:a parallel distributed processing approach[J]. Advances in Psychology, 1997, 121:471-495.DOI:10.1016/50166-4115(97)80111-2. [8] 何树红, 杨博, 戴明爽. 基于动态递归神经网络的石油价格预测[J]. 云南民族大学学报(自然科学版), 2013, 22(1):31-35.DOI:10.3969/j.issn.1672-8513.2013.01.008. [9] 赵曦. 投影寻踪和神经网络算法的石油价格预测[J]. 计算机仿真, 2012, 29(5):371-374. DOI:10.3969/j.issn.1006-9348.2012.05.091. [10] Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2):157-166.DOI:10.1109/72.279181. [11] Chaitanya Lahari M, Ravi D H, Bharathi R. Fuel price prediction using RNN[C]//2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). September 19-22, 2018, Bangalore, India. IEEE, 2018:1510-1514.DOI:10.1109/ICACCI.2018.8554642. [12] Wu Y X, Wu Q B, Zhu J Q. Improved EEMD-based crude oil price forecasting using LSTM networks[J]. Physica A:Statistical Mechanics and Its Applications, 2019, 516:114-124.DOI:10.1016/j.physa.2018.09.120. [13] Chen Y H, He K J, Tso G K F. Forecasting crude oil prices:a deep learning based model[J]. Procedia Computer Science, 2017, 122:300-307.DOI:10.1016/j.procs.2017.11.373. [14] Cen Z P, Wang J. Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer[J]. Energy, 2019, 169:160-171.DOI:10.1016/j.energy.2018.12.016. [15] Yao T X, Wang Z H. Crude oil price prediction based on LSTM network and GM (1, 1) model[J]. Grey Systems:Theory and Application, 2020, 11(1):80-94.DOI:10.1108/gs-03-2020-0031. [16] Bristone M, Prasad R, Abubakar A A. CPPCNDL:crude oil price prediction using complex network and deep learning algorithms[J]. Petroleum, 2020, 6(4):353-361.DOI:10.1016/j.petlm.2019.11.009. [17] Nagendra Kumar Y J, Preetham P, Kiran Varma P, et al. Crude oil price prediction using deep learning[C]//2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). July 15-17, 2020, Coimbatore, India. IEEE, 2020:118-123.DOI:10.1109/ICIRCA48905.2020.9183258. [18] Li Z K, Wang M, Wang X H, et al. Oil price forecasting based on variational mode decomposition, relative entropy and LSTM neural network[J]. IOP Conference Series:Materials Science and Engineering, 2020, 750:012203.DOI:10.1088/1757-899X/750/1/012203. [19] Orojo O, Tepper J, McGinnity T M, et al. A multi-recurrent network for crude oil price prediction[C]//2019 IEEE Symposium Series on Computational Intelligence (SSCI). December 6-9, 2019, Xiamen, China. IEEE, 2020:2940-2945.DOI:10.1109/SSCI44817.2019.9002841. [20] Biswas S, Gall J. Structural recurrent neural network (SRNN) for group activity analysis[C]//2018 IEEE Winter Conference on Applications of Computer Vision (WACV). March 12-15, 2018, Lake Tahoe, NV, USA. IEEE, 2018:1625-1632.DOI:10.1109/WACV.2018.00180. [21] 詹静,范雪,刘一帆,等. SEMBeF:一种基于分片循环神经网络的敏感高效的恶意代码行为检测框架[J]. 信息安全学报, 2019, 4(6):67-79.DOI:10.19363/J.cnki.cn10-1380/tn.2019.11.06. [22] Liu S Y, Hao X G, Meng Z J, et al. Application of SRNN-GRU in photovoltaic power forecasting[J]. E3S Web of Conferences, 2021, 256:02001.DOI:10.1051/e3sconf/202125602v01. [23] Li B, Cheng Z H, Xu Z H, et al. Long text analysis using sliced recurrent neural networks with breaking point information enrichment[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). May 12-17, 2019, Brighton, UK. IEEE, 2019:7550-7554.DOI:10.1109/ICASSP.2019.8683812. [24] Pei X J, Tian S W, Yu L, et al. A two-stream network based on capsule networks and sliced recurrent neural networks for DGA botnet detection[J]. Journal of Network and Systems Management, 2020, 28(4):1694-1721.DOI:10.1007/S10922-020-09554-9. [25] Yu Z P, Shi L Q, Liu G S. Dissect sliced-RNN in multi-attention view[J]. Australian Journal of Intelligent Information Processing System, 2019, 17(2):61-68. [26] Zhang L, Wu N, Ge F, et al. A dynamic branch predictor based on parallel structure of SRNN[J]. IEEE Access, 2020, 8:86230-86237.DOI:10.1109/ACCESS.2020.2992643. [27] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.DOI:10.1162/neco.1997.9.8.1735. [28] Kolen J F, Kremer S C. A field guide to dynamical recurrent networks[M]. New York:IEEE Press, 2001. [29] Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D:Nonlinear Phenomena, 2020, 404:132306.DOI:10.1016/j.physd.2019.132306. [30] Lian H Q, Xu H Y, Wang S W, et al. Partial multiview clustering with locality graph regularization[J]. International Journal of Intelligent Systems, 2021, 36(6):2991-3010.DOI:10.1002/int.22409. [31] Moyo V, Sibanda K. The generalization ability of artificial neural networks in forecasting TCP/IP traffic trends:how much does the size of learning rate matter?[J]. International Journal of Computer Science and Application, 2015, 4(1):9-17. DOI:10.12783/ijcsa.2015.0401.02. |