[1] ITU-R. Recommendation ITU-R M.2092-1-Technical characteristics for a VHF data exchange system in the VHF maritime mobile band [S/OL]. Geneva: International Telecommunication Union:(2022-02-23)[2022-04-20].https://www.itu.int/rec/R-REC-M.2092-1-202202-I/en/. [2] IALA. Guideline G1139 the technical specification of VDES [S/OL]. Saint Germain en Laye: International Association of Marine Aids to Navigation and Lighthouse Authorities:(2019-06-21)[2022-04-20].https://www.iala-aism.org/product/g1139-technical-specification-vdes/. [3] 姚治萱. VDES通信技术应用及其发展趋势[J]. 世界海运, 2019, 42(2): 34-38. DOI:10.16176/j.cnki.21-1284.2019.02.007. [4] 胡旭, 林彬, 王珍. 基于VDES的空天地海通信网络架构与关键技术[J]. 移动通信, 2019, 43(5): 1-8. DOI:10.3969/j.issn.1006-1010.2019.05.001. [5] 王福斋, 胡青, 姚高乐, 等. 甚高频数字交换系统发展现状及推进工作建议[J]. 中国海事, 2021(2): 18-21. DOI:10.16831/j.cnki.issn1673-2278.2021.02.005. [6] Wang Y F, Ding X J, Zhang G X. A novel dynamic spectrum-sharing method for GEO and LEO satellite networks[J]. IEEE Access, 2020, 8: 147895-147906. DOI:10.1109/ACCESS.2020.3015487. [7] Gu P, Li R, Hua C Q, et al. Dynamic cooperative spectrum sharing in a multi-beam LEO-GEO co-existing satellite system[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1170-1182. DOI:10.1109/TWC.2021.3102704. [8] Gu P, Li R, Hua C Q, et al. Cooperative spectrum sharing in a co-existing LEO-GEO satellite system[C]//GLOBECOM 2020:2020 IEEE Global Communications Conference. December 7-11, 2020, Taipei, China. IEEE, 2020:1-6. DOI:10.1109/GLOBECOM42002.2020.9347950. [9] Jia M, Li Z, Gu X M, et al. Joint multi-beam power control for LEO and GEO spectrum-sharing networks[C]//2021 IEEE/CIC International Conference on Communications in China (ICCC). July 28-30, 2021, Xiamen, China. IEEE, 2021: 841-846. DOI:10.1109/ICCC52777.2021.9580210. [10] 李壮. 基于干扰控制的LEO和GEO频谱共享方法[D]. 哈尔滨: 哈尔滨工业大学, 2021. [11] Bu G J, Jiang J. Reinforcement learning-based user scheduling and resource allocation for massive MU-MIMO system[C]//2019 IEEE/CIC International Conference on Communications in China (ICCC). August 11-13, 2019, Changchun, China. IEEE, 2019: 641-646. DOI:10.1109/ICCChina.2019.8855949. [12] Li Z W, Xie Z C, Liang X W. Dynamic channel reservation strategy based on DQN algorithm for multi-service LEO satellite communication system[J]. IEEE Wireless Communications Letters, 2021, 10(4): 770-774. DOI:10.1109/LWC.2020.3043073. [13] 李子煜. 多波束低轨卫星通信系统切换与资源管理算法研究[D].重庆:重庆邮电大学,2021. [14] Seo J, Cho K, Cho W, et al. A discovery scheme based on carrier sensing in self-organizing bluetooth low energy networks[J]. Journal of Network and Computer Applications,2016,65:72-83. DOI:10.1016/j.jnca.2015.09.015. [15] 韩存武, 周慧, 刘蕾, 等. 基于数据的无线通信网络功率和速率控制[J]. 计算机仿真, 2022, 39(2): 375-379, 511. DOI:10.3969/j.issn.1006-9348.2022.02.072. [16] 曾欢, 张灿, 陈德元. 空间通信网中音视频传输的应用层QoS控制与测试方法[J]. 中国科学院研究生院学报, 2011, 28(1): 108-115. DOI:10.7523/j.issn.2095-6134.2011.1.016. [17] Strehl A L, Li L H, Wiewiora E, et al. PAC model-free reinforcement learning[C]//ICML’06: Proceedings of the 23rd international conference on Machine learning. June 25-29, 2006, Pittsburgh, USA. New York: ACM, 2006: 881-888. DOI:10.1145/1143844.1143955. [18] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. DOI:10.1038/nature14236. |