[1] Ge R F, Zhu W B, Zheng B H, et al. Early pan-African magmatism in the Tarim craton: insights from zircon U-Pb-Lu-Hf isotope and geochemistry of granitoids in the Korla area, NW China[J]. Precambrian Research, 2012, 212/213: 117-138. DOI:10.1016/j.precamres.2012.05.001. [2] Ge R F, Zhu W B, Wilde S A, et al. Zircon U-Pb-Lu-Hf-O isotopic evidence for ≥3.5 Ga crustal growth, reworking and differentiation in the northern Tarim Craton[J]. Precambrian Research, 2014, 249: 115-128. DOI:10.1016/j.precamres.2014.05.004. [3] He Z Y, Zhang Z M, Zong K Q, et al. Neoproterozoic granulites from the northeastern margin of the Tarim Craton: petrology, zircon U-Pb ages and implications for the Rodinia assembly[J]. Precambrian Research, 2012, 212/213: 21-33. DOI:10.1016/j.precamres.2012.04.014. [4] Xu Z Q, He B Z, Zhang C L, et al. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: new geochronological evidence from deep drilling samples[J]. Precambrian Research, 2013, 235: 150-162. DOI:10.1016/j.precamres.2013.06.001. [5] He J W, Zhu W B, Ge R F, et al. Detrital zircon U-Pb ages and Hf isotopes of Neoproterozoic strata in the Aksu area, northwestern Tarim Craton: implications for supercontinent reconstruction and crustal evolution[J]. Precambrian Research, 2014, 254: 194-209. DOI:10.1016/j.precamres.2014.08.016. [6] Zhang C L, Ye X T, Zou H B, et al. Neoproterozoic sedimentary basin evolution in southwestern Tarim, NW China: new evidence from field observations, detrital zircon U-Pb ages and Hf isotope compositions[J]. Precambrian Research, 2016, 280: 31-45. DOI:10.1016/j.precamres.2016.04.011. [7] Wu G H, Xiao Y, Bonin B, et al. Ca. 850 Ma magmatic events in the Tarim Craton: age, geochemistry and implications for assembly of Rodinia supercontinent[J]. Precambrian Research, 2018, 305: 489-503. DOI:10.1016/j.precamres.2017.10.020. [8] He J Y, Xu B, Li D. Newly discovered early Neoproterozoic (Ca. 900 Ma) andesitic rocks in the northwestern Tarim Craton: implications for the reconstruction of the Rodinia supercontinent[J]. Precambrian Research, 2019, 325: 55-68. DOI:10.1016/j.precamres.2019.02.018. [9] Chen W Y, Zhu G Y, Zhang K J, et al. Late Neoproterozoic intracontinental rifting of the Tarim Craton, NW China: an integrated geochemical, geochronological and Sr-Nd-Hf isotopic study of siliciclastic rocks and basalts from deep drilling cores[J]. Gondwana Research, 2020, 80: 142-156. DOI:10.1016/j.gr.2019.10.007. [10] Ren R, Guan S W, Zhang S C, et al. How did the peripheral subduction drive the Rodinia breakup: constraints from the Neoproterozoic tectonic process in the northern Tarim Craton[J]. Precambrian Research, 2020, 339: 105612. DOI:10.1016/j.precamres.2020.105612. [11] 李晓剑, 王毅, 李慧莉, 等. 新元古代陆缘岩浆弧—塔里木盆地巴楚隆起的基底: 来自钻井岩芯的最新证据[J]. 岩石学报, 2018, 34(7): 2140-2164. [12] 汤良杰. 塔里木盆地构造演化与构造样式[J]. 地球科学, 1994, 19(6): 742-754. [13] 贾承造. 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质, 1999, 20(3): 177-183. DOI:10.3969/j.issn.1001-3873.1999.03.001. [14] Zhang C L, Li Z X, Li X H, et al. Neoproterozoic bimodal Intrusive complex in the southwestern Tarim block, northwest China: age, geochemistry, and implications for the rifting of rodinia[J]. International Geology Review, 2006, 48(2): 112-128. DOI:10.2747/0020-6814.48.2.112. [15] Zhang C L, Li H K, Santosh M, et al. Precambrian evolution and cratonization of the Tarim Block, NW China: petrology, geochemistry, Nd-isotopes and U-Pb zircon geochronology from Archaean gabbro-TTG-potassic granite suite and Paleoproterozoic metamorphic belt[J]. Journal of Asian Earth Sciences, 2012, 47: 5-20. DOI:10.1016/j.jseaes.2011.05.018. [16] Long X P, Xu B, Yuan C, et al. Precambrian crustal evolution of the southwestern Tarim Craton, NW China: constraints from new detrital zircon ages and Hf isotopic data of the Neoproterozoic metasedimentary rocks[J]. Precambrian Research, 2019, 334(2): 105473. DOI:10.1016/j.precamres.2019.105473. [17] Long X P, Yuan C, Sun M, et al. Archean crustal evolution of the northern Tarim craton, NW China: zircon U-Pb and Hf isotopic constraints[J]. Precambrian Research, 2010, 180(3/4): 272-284. DOI:10.1016/j.precamres.2010.05.001. [18] Long X P, Yuan C, Sun M, et al. New geochemical and combined zircon U-Pb and Lu-Hf isotopic data of orthogneisses in the northern Altyn Tagh, northern margin of the Tibetan plateau: implication for Archean evolution of the Dunhuang Block and crust formation in NW China[J]. Lithos, 2014, 200/201(3): 418-431. DOI:10.1016/j.lithos.2014.05.008. [19] Long X P, Yuan C, Sun M, et al. Reworking of the Tarim craton by underplating of mantle plume-derived magmas: evidence from neoproterozoic granitoids in the Kuluketage area, NW China[J]. Precambrian Research, 2011, 187(1/2): 1-14. DOI:10.1016/j.precamres.2011.02.001. [20] 何登发, 袁航, 李涤, 等. 吐格尔明背斜核部花岗岩的年代学、地球化学与构造环境及其对塔里木地块北缘古生代伸展聚敛旋回的揭示[J]. 岩石学报, 2011, 27(1): 133-146. [21] 罗金海, 车自成, 张小莉, 等. 塔里木盆地东北部新元古代花岗质岩浆活动及地质意义[J]. 地质学报, 2011, 85(4): 467-474. [22] 龙晓平, 袁超, 孙敏, 等. 库鲁克塔格地区最古老岩石的发现及其地质意义[J]. 中国科学(地球科学), 2011, 41(3): 291-298. DOI: 10.1007/s11430-010-4156-z. [23] 马玉杰, 罗金海, 唐雁刚, 等. 塔里木盆地库车坳陷东部基底地层的时代及其地质意义[J]. 地质科学, 2011, 46(2): 475-482. DOI:10.3969/j.issn.0563-5020.2011. 02.016. [24] Shu L S, Deng X L, Zhu W B, et al. Precambrian tectonic evolution of the Tarim Block, NW China: new geochro-nological insights from the Quruqtagh domain[J]. Journal of Asian Earth Sciences, 2011, 42(5): 774-790. DOI:10.1016/j.jseaes.2010.08.018. [25] Zhu W B, Zheng B H, Shu L S, et al. Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane, northwestern Tarim, China: insights from LA-ICP-MS zircon U-Pb ages and geochemical data[J]. Precambrian Research, 2011, 185(3/4): 215-230. DOI:10.1016/j.precamres.2011.01.012. [26] He Z Y, Zhang Z M, Zong K Q, et al. Paleoproterozoic crustal evolution of the Tarim Craton: constrained by zircon U-Pb and Hf isotopes of meta-igneous rocks from Korla and Dunhuang[J]. Journal of Asian Earth Sciences, 2013, 78: 54-70. DOI:10.1016/j.jseaes.2013.07.022. [27] Wang C, Liu L, Wang Y H, et al. Recognition and tectonic implications of an extensive Neoproterozoic volcano-sedimentary rift basin along the southwestern margin of the Tarim Craton, northwestern China[J]. Precambrian Research, 2015, 257: 65-82. DOI:10.1016/j.precamres.2014.11.022. [28] Yuan Y, Zong K Q, He Z Y, et al. Geochemical and geochronological evidence for a former early Neoproterozoic microcontinent in the South Beishan Orogenic Belt, southernmost Central Asian Orogenic Belt[J]. Precambrian Research, 2015, 266: 409-424. DOI:10.1016/j.preca-mres.2015.05.034. [29] Ye X T, Zhang C L, Santosh M, et al. Growth and evolution of Precambrian continental crust in the southwestern Tarim terrane: new evidence from the Ca. 1.4 Ga A-type granites and Paleoproterozoic intrusive complex[J]. Precambrian Research, 2016, 275: 18-34. DOI:10.1016/j.precamres.2015.12.017. [30] Cai Z H, Jiao C L, He B Z, et al. Archean-Paleoproterozoic tectonothermal events in the central Tarim Block: constraints from granitic gneisses revealed by deep drilling wells[J]. Precambrian Research, 2020, 347: 105776. DOI:10.1016/j.precamres.2020.105776. [31] Cai Z H, Xu Z Q, Yu S Y, et al. Neoarchean magmatism and implications for crustal growth and evolution of the Kuluketage region, northeastern Tarim Craton[J]. Preca-mbrian Research, 2018, 304: 156-170. DOI:10.1016/j.precamres.2017.11.016. [32] Wang Z M, Han C M, Xiao W J, et al. Mineralogy, geoche-mistry, and zircon U-Pb-Hf isotopes of the Paleoproterozoic granulite-facies metamorphic rocks from the aketashitage area, southeastern Tarim craton[J]. Precambrian Research, 2019, 321: 13-33. DOI:10.1016/j.precamres.2018.11.003. [33] 柳永清, 旷红伟, 彭楠, 等. 华北—扬子—塔里木中新元古代地层-沉积演化与聚-散构造背景[C]//中国地球科学联合学术年会论文集. 北京: 中国和平音像电子出版社, 2018. [34] 旷红伟, 柳永清, 耿元生, 等. 中国中新元古代重要沉积地质事件及其意义[J]. 古地理学报, 2019, 21(1): 1-30. DOI:10.7605/gdlxb.2019.01.001. [35] 邬光辉, 张承泽, 汪海, 等. 塔里木盆地中部塔参1井花岗闪长岩的锆石SHRIMP U-Pb年龄[J]. 地质通报, 2009, 28(5): 568-571. DOI:10.3969/j.issn.1671-2552. 2009.05.005. [36] 邬光辉, 李浩武, 徐彦龙, 等. 塔里木克拉通基底古隆起构造-热事件及其结构与演化[J]. 岩石学报, 2012, 28(8): 2435-2452. [37] 邹亚锐, 塔吉古丽, 邢作云, 等. 塔里木新元古代—古生代沉积盆地演化[J]. 地球科学, 2014, 39(8): 1200-1216. DOI:10.3799/dqkx.2014.104. [38] 冯许魁, 刘永彬, 韩长伟, 等. 塔里木盆地震旦系裂谷发育特征及其对油气勘探的指导意义[J]. 石油地质与工程, 2015, 29(2): 5-10. DOI:10.3969/j.issn.1673-8217.2015.02.002. [39] 王洪浩, 李江海, 周肖贝, 等. 塔里木陆块在Rodinia超大陆中位置的新认识: 来自地层对比和古地磁的制约[J]. 地球物理学报, 2015, 58(2): 589-600. DOI:10.6038/cjg20150221. [40] 韩强, 朱允辉, 朱传玲, 等. 塔里木盆地沙雅隆起北部三道桥地区前震旦纪基底岩浆岩特征与锆石U-Pb年龄研究[J]. 岩石学报, 2016, 32(5): 1493-1504. [41] 韩强, 杨子川, 李宗杰, 等. 塔里木盆地沙雅隆起北部震旦纪地层特征与锆石U-Pb年龄约束[J]. 地层学杂志, 2017, 41(4): 428-436. DOI:10.19839/j.cnki.dcxzz.2017.04.009. [42] 杨鑫, 徐旭辉, 李慧莉, 等. 塔里木北缘新元古代早期构造演化的锆石U-Pb年代学和地球化学约束[J]. 大地构造与成矿学, 2017, 41(2): 381-395. DOI:10.16539/j.ddgzyckx.2017.02.012. [43] 石开波, 刘波, 姜伟民, 等. 塔里木盆地南华纪—震旦纪构造-沉积格局[J]. 石油与天然气地质, 2018, 39(5): 862-877. DOI:10.11743/ogg20180502. [44] 石开波, 刘波, 田景春, 等. 塔里木盆地震旦纪沉积特征及岩相古地理[J]. 石油学报, 2016, 37(11): 1343-1360. DOI:10.7623/syxb201611003. [45] 任荣, 管树巍, 吴林, 等. 塔里木新元古代裂谷盆地南北分异及油气勘探启示[J]. 石油学报, 2017, 38(3): 255-266. DOI:10.7623/syxb201703002. [46] 何碧竹, 焦存礼, 黄太柱, 等. 塔里木盆地新元古代裂陷群结构构造及其形成动力学[J]. 中国科学(地球科学), 2019, 49(4): 635-655. DOI:10.1360/N072018-00010. [47] 王鸿钧, 黄宝春, 赵千, 等. 塔里木地块晚新元古代古地理位置的古地磁新制约[J]. 地质学报, 2019, 93(9): 2123-2138. DOI:10.19762/j.cnki.dizhixuebao.2019191. [48] 陈汉林, 黄伟康, 李勇, 等. 塔里木盆地西北缘震旦系沉积物源分析及对盆地属性的制约[J]. 石油实验地质, 2020, 42(5): 756-766. DOI:10.11781/sysydz202005756. [49] Xu B, Zou H B, Chen Y, et al. The Sugetbrak basalts from northwestern Tarim Block of northwest China: geochronology, geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic[J]. Precambrian Research, 2013, 236: 214-226. DOI:10.1016/j.precamres.2013.07.009. [50] Turner S A. Sedimentary record of late neoproterozoic rifting in the NW Tarim Basin, China[J]. Precambrian Research, 2010, 181(1/2/3/4): 85-96. DOI:10.1016/j.precamres.2010.05.015. [51] 刘若涵, 何碧竹, 焦存礼, 等. 新疆阿克苏地区新元古代沉积特征对裂谷发育过程的指示[J]. 岩石学报, 2020, 36(10): 3225-3242. DOI:10.18654/1000-0569/2020. 10.17. [52] 何景文, 朱文斌, 郑碧海, 等. 塔里木西北缘阿克苏地区震旦系苏盖特布拉克组沉积物源分析: 碎屑锆石年代学证据[J]. 地质学报, 2015, 89(1): 149-162. [53] 周肖贝, 李江海, 傅臣建, 等. 塔里木盆地北缘南华纪—寒武纪构造背景及构造-沉积事件探讨[J]. 中国地质, 2012, 39(4): 900-911. DOI:10.3969/j.issn.1000-3657.2012.04.005. [54] 吴林, 管树巍, 杨海军, 等. 塔里木北部新元古代裂谷盆地古地理格局与油气勘探潜力[J]. 石油学报, 2017, 38(4): 375-385. DOI:10.7623/syxb201704002. [55] 李忠, 高剑, 郭春涛, 等. 塔里木块体北部泥盆—石炭纪陆缘构造演化:盆地充填序列与物源体系约束[J]. 地学前缘, 2015, 22(1): 35-52. DOI:10.13745/j.esf.2015.01.004. [56] 王昆山, 石学法, 刘升发, 等. 泰国湾西部表层沉积物重矿物分布特征: 对物质来源和沉积环境的指示[J]. 第四纪研究, 2014, 34(3): 623-634. DOI:10.3969/j.issn.1001-7410.2014.03.16. [57] Ludwig K R. User’s manual for Isoplot 3.0: a geochrono-logical toolkit for Microsoft Excel[M]. Berkeley Geoch-ronology Center Special Publicatio, 2003. [58] Gehrels G E, Valencia V A, Ruiz J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03017. DOI:10.1029/2007GC001805. [59] Morel M L A, Nebel O, Nebel-Jacobsen Y J, et al. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS[J]. Chemical Geology, 2008, 255(1/2): 231-235. DOI:10.1016/j.chemgeo.2008.06.040. [60] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. DOI:10.3969/j.issn.1000-0569.2007.02.001. [61] Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 2004, 131(3/4): 231-282. DOI:10.1016/j.precamres.2003.12.011. [62] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publi-cations, 1989, 42(1): 313-345. DOI:10.1144/gsl.sp.1989.042.01.19. [63] Corfu F, Hanchar J M, Hoskin P, et al. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469-500. DOI:10.2113/0530469. [64] 常鑫, 张明宇, 谷玉, 等. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320. DOI:10.11867/j.issn.1001-8166.2020.105. [65] 颜克波. 测井资料在沉积相分析中的应用[J]. 石化技术, 2017, 24(3): 159. DOI:10.3969/j.issn.1006-0235.2017.03.128. [66] 王贵文, 郭荣坤. 测井地质学[M]. 北京: 石油工业出版社, 2000. [67] Nelson D R. An assessment of the determination of depo-sitional ages for Precambrian clastic sedimentary rocks by U-Pb dating of detrital zircons[J]. Sedimentary Geology, 2001, 141/142: 37-60. DOI:10.1016/S0037-0738(01)00067-7. [68] Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125. DOI:10.1016/j.epsl.2009.09.013. [69] Belousova E, Griffin W, O’Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. DOI:10.1007/s00410-002-0364-7. [70] 徐杰, 姜在兴. 碎屑岩物源研究进展与展望[J]. 古地理学报, 2019, 21(3): 379-396. DOI:10.7605/gdlxb.2019.03.022. [71] Zhang J X, Yu S Y, Gong J H, et al. The latest Neoarchean-Paleoproterozoic evolution of the Dunhuang block, eastern Tarim craton, northwestern China: evidence from zircon U-Pb dating and Hf isotopic analyses[J]. Precambrian Research, 2013, 226: 21-42. DOI:10.1016/j.precamres.2012.11.014. [72] Zhang C L, Zou H B, Li H K, et al. Tectonic framework and evolution of the Tarim Block in NW China[J]. Gondwana Research, 2013, 23(4): 1306-1315. DOI:10.1016/j.gr.2012.05.009. [73] 黄博涛, 贺振宇, 宗克清, 等. 新疆阿拉塔格地区新元古代花岗片麻岩的锆石U-Pb定年与Hf同位素: 对中天山地块前寒武纪地壳演化的制约[J]. 科学通报, 2014, 59(3): 287-296. DOI:10.1360/csb2014-59-3-287. [74] Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878. DOI: 10.1130/g32945.1. [75] Lu Y Z, Zhu W B, Ge R F, et al. Neoproterozoic active continental margin in the northwestern Tarim Craton: clues from Neoproterozoic (meta)sedimentary rocks in the Wushi area, northwest China[J]. Precambrian Research, 2017, 298: 88-106. DOI:10.1016/j.precamres.2017.06.002. |