[1] Rani D, Opaluch O R, Neu E. Recent advances in single crystal diamond device fabrication for photonics, sensing and nanomechanics[J]. Micromachines, 2020, 12(1):36. DOI:10.3390/mi12010036. [2] Wang Y F, Wang W, Wei J J, et al. Electrochemical route to bio-compatible fluorine-terminated diamond surface[J]. Carbon, 2021, 176:83-87. DOI:10.1016/j.carbon.2021.01.017. [3] Li J J, Li B, Zuo Y G, et al. Application of dual radio frequency inductive coupled plasma into CVD diamond growth[J]. Vacuum, 2018, 154:174-176. DOI:10.1016/j.vacuum.2018.04.054. [4] Yamada H, Chayahara A, Mokuno Y, et al. A 2-in. mosaic wafer made of a single-crystal diamond[J]. Applied Physics Letters, 2014, 104(10):102110. DOI:10.1063/1.4868720. [5] Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth:the key mechanism for the synthesis of single crystal diamond wafers[J]. Scientific Reports, 2017, 7:44462. DOI:10.1038/srep44462. [6] 吕反修,李成明.我国化学气相沉积(CVD)金刚石膜研究三十年[J].人工晶体学报, 2022, 51(5):753-758. DOI:10.16553/j.cnki.issn1000-985x.2022.05.005. [7] Hou P Y, Zhou M, Zhang H J. Thermal behavior of single-crystal diamonds catalyzed by titanium alloy at elevated temperature[J]. Applied Sciences, 2020, 10(13):4651. DOI:10.3390/app10134651. [8] 李小波,唐大伟,祝捷.纳米金刚石颗粒导热系数的分子动力学研究[J].中国科学院研究生院学报, 2008, 25(5):598-601. DOI:10.7523/j.issn.2095-6134. 2008.5.004. [9] Golter D A, Oo T, Amezcua M, et al. Optomechanical quantum control of a nitrogen-vacancy center in diamond[J]. Physical Review Letters, 2016, 116(14):143602. DOI:10.1103/PhysRevLett.116.143602. [10] Turunen M, Brotons-Gisbert M, Dai Y Y, et al. Quantum photonics with layered 2D materials[J]. Nature Reviews Physics, 2022, 4(4):219-236. DOI:10.1038/s42254-021-00408-0. [11] Feng H B, Chen Y Q, Zhang L C. Polishing of CVD diamond wafers and films[J]. Key Engineering Materials, 2012, 531/532:373-376. DOI:10.4028/www.scientific.net/kem.531-532.373. [12] 温海浪,肖平,陆静.大尺寸单晶金刚石衬底抛光技术研究现状与展望[J].机械工程学报, 2021, 57(22):157-171. DOI:10.3901/JME.2021.22.157. [13] Chen Y, Zhang L C, Tang F. Surface integrity of PCD composites generated by dynamic friction polishing:effect of processing conditions[J]. Diamond and Related Materials, 2012, 26(6):25-31. DOI:10.1016/j.diamond.2012.04.002. [14] Luo H, Ajmal K M, Liu W, et al. Polishing and planarization of single crystal diamonds:state of the art and perspectives[J]. International Journal of Extreme Manufacturing, 2021, 3(2):44-91. DOI:10.1088/2631-7990/abe915. [15] Suzuki K, Iwai M, Uematsu T, et al. Material removal mechanism in dynamic friction polishing of diamond[J]. Key Engineering Materials, 2003, 238-239(3):235-240. DOI:10.4028/www.scientific.net/kem.238-239.235. [16] Chen Y, Zhang L C, Arsecularatne J A. Polishing of polycrystalline diamond by the technique of dynamic friction. Part 2:Material removal mechanism[J]. International Journal of Machine Tools and Manufacture, 2007, 47(10):1615-1624. DOI:10.1016/j.ijmachtools.2006.11.003. [17] Chen Y Q, Zhang L C. Fast polishing of single crystal diamond[J]. Advanced Materials Research, 2010, 97-101(6):4096-4099. DOI:10.4028/www.scientific.net/AMR.97-101.4096. [18] Shi S J, Jin Z J, Zhong X H, et al. Processing and mechanism of dynamic friction polishing diamond using manganese-based alloy[J]. Materials and Manufacturing Processes, 2015, 30(5):654-660. DOI:10.1080/10426914.2014.952033. [19] Jin Z J, Shi S J, Lin J Z, et al. Preparation and performance of dynamic friction polishing plate for diamond film[J]. Materials and Manufacturing Processes, 2014, 29(1):20-26. DOI:10.1080/10426914. 2013.852219. [20] Zheng Y T, Cumont A E L, Bai M J, et al. Smoothing of single crystal diamond by high-speed three-dimensional dynamic friction polishing:optimization and surface bonds evolution mechanism[J]. International Journal of Refractory Metals and Hard Materials, 2021, 96:105472. DOI:10.1016/j.ijrmhm.2021.105472. |