[1] Myroniuk V, Bell D M, Gregory M J, et al.Uncovering forest dynamics using historical forest inventory data and Landsat time series[J]. Forest Ecology and Management, 2022, 513: 120184. DOI: 10.1016/j.foreco.2022.120184. [2] 吴炳方, 蒙继华, 李强子. 国外农情遥感监测系统现状与启示[J]. 地球科学进展, 2010, 25(10): 1003-1012. DOI: 10.11867/j.issn.1001-8166.2010.10.1003. [3] Song J, Gao S H, Zhu Y Q, et al.A survey of remote sensing image classification based on CNNs[J]. Big Earth Data, 2019, 3(3): 232-254. DOI:10.1080/20964471.2019.1657720. [4] Zhang L P, Zhang L F, Du B.Deep learning for remote sensing data: A technical tutorial on the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 4(2): 22-40. DOI: 10.1109/MGRS.2016.2540798. [5] 闫雪静, 刘巍, 刘士彬, 等. 遥感影像区域覆盖数据集筛选方法研究[J/OL]. 中国科学院大学学报(2022-01-13)[2023-04-25], DOI: 10.7523/j.ucas.2022.006. [6] Kussul N, Lavreniuk M, Skakun S, et al.Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 778-782. DOI: 10.1109/LGRS.2017.2681128. [7] Singh S, Suresh M, Jain K.Land information extraction with boundary preservation for high resolution satellite image[J]. International Journal of Computer Applications, 2015, 120(7): 39-43. DOI: 10.5120/21243-4014. [8] 罗开盛, 李仁东, 常变蓉. 利用面向对象分类技术的大尺度土地覆被调查方法[J]. 中国科学院大学学报, 2013, 30(6): 770-778. DOI: 10.7523/j.issn.2095-6134.2013.06.009. [9] 张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报, 2019, 42(3): 453-482. DOI: 10.11897/SP.J.1016.2019.00453. [10] Ronneberger O, Fischer P, Brox T.U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. DOI: 10.1007/978-3-319-24574-4_28. [11] 杨丹, 李崇贵, 常铮, 等. 应用U-Net模型和多时相Landsat-8影像对森林植被的分类[J]. 东北林业大学学报, 2021, 49(9): 55-59, 66. DOI: 10.13759/j.cnki.dlxb.2021.09.011. [12] Vaswani A, Shazeer N, Parmar N, et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. December 4 - 9, 2017, Long Beach, California, USA. New York: ACM, 2017: 6000-6010. DOI: 10.5555 /3295222.3295349. [13] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL].2020: arXiv: 2010.11929.(2020-10-22)[2023-04-25]. https://arxiv.org/abs/2010.11929. [14] Zheng S X, Lu J C, Zhao H S, et al.Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021, Nashville, TN, USA. IEEE, 2021: 6877-6886. DOI: 10.1109/CVPR46437.2021.00681. [15] Chen J N, Lu Y Y, Yu Q H, et al. Transunet: Transformers make strong encoders for medical image segmentation[EB/OL].2021: arXiv: 2102.04306.(2021-02-08)[2023-04-25]. https://arxiv.org/abs/2102.04306. [16] Hassani A, Walton S, Shah N, et al. Escaping the big data paradigm with compact transformers[EB/OL].2021: arXiv: 2104.05704.(2021-04-12)[2023-04-25]. https://arxiv.org/abs/2104.05704. [17] Zhang Y D, Liu H Y, Hu Q.TransFuse: fusing transformers and CNNs for medical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2021: 14-24. DOI: 10.1007/978-3-030-87193-2_2. [18] Xu W J, Xu Y F, Chang T, et al.Co-scale conv-attentional image transformers[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). October 10-17, 2021, Montreal, QC, Canada. IEEE, 2021: 9961-9970. DOI: 10.1109/ICCV48922.2021.00983. [19] Liu Z, Lin Y T, Cao Y, et al.Swin transformer: Hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). October 10-17, 2021, Montreal, QC, Canada. IEEE, 2021: 9992-10002. DOI: 10.1109/ICCV48922.2021.00986. [20] Hassani A, Shi H. Dilated neighborhood attention transformer[EB/OL].2022: arXiv: 2209.15001.(2022-09-29)[2023-04-25]. https://arxiv.org/abs/2209.15001. [21] Hassani A, Walton S, Li J C, et al. Neighborhood attention transformer[EB/OL].2022: arXiv: 2204.07143.(2022-04-14)[2023-04-25]. https://arxiv.org/abs/2204.07143. [22] Cao H, Wang Y Y, Chen J, et al.Swin-unet: Unet-like pure transformer for medical image segmentation[C]//Karlinsky L, Michaeli T, Nishino K. European Conference on Computer Vision. Cham: Springer, 2023: 205-218. DOI: 10.1007/978-3-031-25066-8_9. [23] Touvron H, Cord M, Sablayrolles A, et al.Going deeper with image transformers[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). October 10-17, 2021, Montreal, QC, Canada. IEEE, 2021: 32-42. DOI: 10.1109/ICCV48922.2021.00010. [24] Shelhamer E, Long J, Darrell T.Fully convolutional networks for semantic segmentation[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence. May 24, 2016, IEEE, 2016: 640-651. DOI: 10.1109/TPAMI.2016.2572683. [25] Chen L C, Papandreou G, Kokkinos I, et al.DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. DOI: 10.1109/TPAMI.2017.2699184. [26] Kingma D P, Ba J. Adam: A method for stochastic optimization[EB/OL].2014: arXiv: 1412.6980.(2014-12-22)[2023-04-25]. https://arxiv.org/abs/1412.6980. |