[1] Zhang Y C, Rossow W B, Lacis A A, et al. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets:refinements of the radiative transfer model and the input data[J]. Journal of Geophysical Research:Atmospheres, 2004, 109(D19):D19105. DOI:10.1029/2003JD004457. [2] Sun L, Wei J, Wang J, et al. A universal dynamic threshold cloud detection algorithm (UDTCDA) supported by a prior surface reflectance database[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(12):7172-7196. DOI:10.1002/2015JD024722. [3] 刘庆凤, 刘吉平, 宋开山. 基于MODIS/NDVI时序数据的土地覆盖分类[J]. 中国科学院研究生院学报, 2010, 27(2):163-169. DOI:10.7523/j.issn.2095-6134.2010.2.003. [4] 段雅鸣, 张锦水, 朱爽. 基于深度卷积神经网络的云检测方法[J]. 测绘通报, 2021(4):33-39. DOI:10.13474/j.cnki.11-2246.2021.0107. [5] Zhu Z, Woodcock C E. Object-based cloud and cloud shadow detection in Landsat imagery[J]. Remote Sensing of Environment, 2012, 118:83-94. DOI:10.1016/j.rse.2011.10.028. [6] Zhai H, Zhang H Y, Zhang L P, et al. Cloud/shadow detection based on spectral indices for multi/hyperspectral optical remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144:235-253. DOI:10.1016/j.isprsjprs.2018.07.006. [7] Frantz D, Haß E, Uhl A, et al. Improvement of the Fmask algorithm for Sentinel-2 images:separating clouds from bright surfaces based on parallax effects[J]. Remote Sensing of Environment, 2018, 215:471-481. DOI:10.1016/j.rse.2018.04.046. [8] Oishi Y, Ishida H, Nakamura R. A new Landsat 8 cloud discrimination algorithm using thresholding tests[J]. International Journal of Remote Sensing, 2018, 39(23):9113-9133. DOI:10.1080/01431161.2018.1506183. [9] 张永宏, 蔡朋艳, 陶润喆, 等. 基于改进U-Net网络的遥感图像云检测[J]. 测绘通报, 2020(3):17-20,34. DOI:10.13474/j.cnki.11-2246.2020.0070. [10] Jeppesen J H, Jacobsen R H, Inceoglu F, et al. A cloud detection algorithm for satellite imagery based on deep learning[J]. Remote Sensing of Environment, 2019, 229:247-259. DOI:10.1016/j.rse.2019.03.039. [11] Chai D F, Newsam S, Zhang H K, et al. Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks[J]. Remote sensing of environment, 2019, 225:307-316. DOI:10.1016/j.rse.2019.03.007. [12] Li Z W, Shen H F, Cheng Q, et al. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150:197-212. DOI:10.1016/j.isprsjprs.2019.02.017. [13] 赵敏钧, 赵亚伟, 赵雅捷, 等. 一种新的基于深度学习的重叠关系联合抽取模型[J]. 中国科学院大学学报. DOI:10.7523/j.ucas.2020.0026. [14] Sha Y, Zhang Y, Ji X, et al. Transformer-Unet:raw image processing with unet[EB/OL]. arXiv:2109.08417v1. (2021-09-17)[2021-11-11]. https://arxiv.org/abs/2109.08417v1. [15] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[EB/OL]. arXiv:1706.03762v5. (2017-12-06)[2021-11-11]. https://arxiv.org/abs/1706.03762v5. [16] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words:transformers for image recognition at scale[EB/OL]. arXiv:2010.11929v2. (2021-06-03)[2021-11-11]. https://arxiv.org/abs/2010.11929v2. [17] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//Computer Vision-ECCV 2020, 2020:213-229. DOI:10.1007/978-3-030-58452-8_13. [18] Liu Z, Lin Y T, Cao Y, et al. Swin transformer:hierarchical vision transformer using shifted windows[EB/OL]. arXiv:2103.14030v2. (2021-08-17)[2021-11-11]. https://arxiv.org/abs/2103.14030v2. [19] Foga S, Scaramuzza P L, Guo S, et al. Cloud detection algorithm comparison and validation for operational Landsat data products[J]. Remote Sensing of Environment, 2017, 194:379-390. DOI:10.1016/j.rse.2017.03.026. [20] He Q B, Sun X, Yan Z Y, et al. DABNet:deformable contextual and boundary-weighted network for cloud detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 5474, PP(99):1-16. DOI:10.1109/TGRS.2020.3045474. |