[1] Li S Y, Sun Y N, Yen G G, et al. Automatic design of convolutional neural network architectures under resource constraints[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021:1-15. DOI: 10.1109/TNNLS.2021.3123105. [2] Campi M C, Garatti S. A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality[J]. Journal of Optimization Theory and Applications, 2011, 148(2): 257-280. DOI: 10.1007/s10957-010-9754-6. [3] Calafiore G, Campi M C. Uncertain convex programs: Randomized solutions and confidence levels[J]. Mathematical Programming, 2005, 102(1): 25-46. DOI: 10.1007/s10107-003-0499-y. [4] Seri R, Choirat C. Scenario approximation of robust and chance-constrained programs[J]. Journal of Optimization Theory and Applications, 2013, 158(2): 590-614. DOI: 10.1007/s10957-012-0230-3. [5] Wang M D, Bertsekas D P. Stochastic first-order methods with random constraint projection[J]. SIAM Journal on Optimization, 2016, 26(1): 681-717. DOI: 10.1137/130931278. [6] Wang M D, Chen Y C, Liu J L, et al. Random multi-constraint projection: stochastic gradient methods for convex optimization with many constraints[EB/OL]. 2015: arXiv: 1511.03760. (2015-11-12)[2023-01-16]. https://arxiv.org/abs/1511.03760. [7] Lan G H, Zhou Z Q. Algorithms for stochastic optimization with function or expectation constraints[J]. Computational Optimization and Applications, 2020, 76(2): 461-498. DOI: 10.1007/s10589-020-00179-x. [8] Nocedal J, Wright S J. Numerical optimization: springer series in operations research and financial engineering[M]. New York, NY: Springer New York, 2006: 529-562. [9] Lin Q H, Nadarajah S, Soheili N. A level-set method for convex optimization with a feasible solution path[J]. SIAM Journal on Optimization, 2018, 28(4): 3290-3311. DOI: 10.1137/17M1152334. [10] Lin Q H, Ma R C, Yang T B. Level-set methods for finite-sum constrained convex optimization[C/OL]//Proceedings of the 35th International Conference on Machine Learning: Vol 80. PMLR, 2018: 3112-3121. https://proceedings.mlr.press/v80/lin18c.html. [11] Aravkin A Y, Burke J V, Drusvyatskiy D, et al. Level-set methods for convex optimization[J]. Mathematical Programming, 2019, 174(1): 359-390. DOI: 10.1007/s10107-018-1351-8. [12] Boob D, Deng Q, Lan G H. Stochastic first-order methods for convex and nonconvex functional constrained optimization[J]. Mathematical Programming, 2023, 197(1): 215-279. DOI: 10.1007/s10107-021-01742-y. [13] Xu Y Y. Iteration complexity of inexact augmented Lagrangian methods for constrained convex programming[J]. Mathematical Programming, 2021, 185(1): 199-244. DOI: 10.1007/s10107-019-01425-9. [14] Xu Y Y. Primal-dual stochastic gradient method for convex programs with many functional constraints[J]. SIAM Journal on Optimization, 2020, 30(2): 1664-1692. DOI: 10.1137/18M1229869. [15] Rockafellar R T. A dual approach to solving nonlinear programming problems by unconstrained optimization[J]. Mathematical Programming, 1973, 5(1): 354-373. DOI: 10.1007/BF01580138. [16] Rockafellar R T. Augmented lagrangians and applications of the proximal point algorithm in convex programming[J]. Mathematics of Operations Research, 1976, 1(2): 97-116. DOI: 10.1287/moor.1.2.97. [17] Kingma D, Ba J. Adam: a method for stochastic optimization[EB/OL]. (2014-12-22)[2023-01-16]. http://arxiv.org/abs/1412.6980. [18] Defazio A, Bach F, Lacoste-Julien S. SAGA: a fast incremental gradient method with support for non-strongly convex composite objectives[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, Vol 1. December 8-13, 2014, Montreal, Canada. New York. ACM, 2014: 1646-1654. DOI: 10.5555/2968826.2969010. |