[1] Jiang D Q, Ji C Y, Li X Y, et al. Analysis of autonomous Lotka-Volterra competition systems with random perturbation[J]. Journal of Mathematical Analysis and Applications, 2012, 390(2): 582-595. DOI:10.1016/j.jmaa.2011.12.049. [2] Mao X R, Marion G, Renshaw E. Environmental Brownian noise suppresses explosions in population dynamics[J]. Stochastic Processes and Their Applications, 2002, 97(1): 95-110. DOI:10.1016/S0304-4149(01)00126-0. [3] Zhou L N, Pan S M, Wang J W, et al. Machine learning on big data: opportunities and challenges[J]. Neurocomputing, 2017, 237: 350-361. DOI:10.1016/j.neucom.2017.01.026. [4] Raissi M, Perdikaris P, Karniadakis G E. Multistep neural networks for data-driven discovery of nonlinear dynamical systems[EB/OL]. 2018: arXiv: 1801.01236. (2018-01-04) [2023-01-11]. https://arxiv.org/abs/1801.01236. [5] Chen R T Q, Rubanova Y, Bettencourt J, et al. Neural ordinary differential equations[EB/OL]. 2018: arXiv: 1806.07366. (2019-12-14) [2023-01-11]. https://arxiv.org/abs/1806.07366. [6] Gholami A, Keutzer K, Biros G. ANODE: Unconditionally accurate memory-efficient gradients for neural ODEs[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. August 10-16, 2019, Macao, China. New York: ACM, 2019: 730-736. DOI: 10.24963/ijcai.2019/103. [7] Urain J, Ginesi M, Tateo D, et al. ImitationFlow: learning deep stable stochastic dynamic systems by normalizing flows[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). October 24-January 24, 2021, Las Vegas, NV, USA. IEEE, 2021: 5231-5237. DOI:10.1109/IROS45743.2020.9341035. [8] Kong L K, Sun J M, Zhang C. SDE-net: equipping deep neural networks with uncertainty estimates[EB/OL]. 2020: arXiv: 2008.10546. (2020-08-24) [2023-01-11]. https://arxiv.org/abs/2008.10546. [9] Yildiz C, Heinonen M, Intosalmi J, et al. Learning stochastic differential equations with Gaussian processes without gradient matching[C]//2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP). September 17-20, 2018, Aalborg, Denmark. IEEE, 2018: 1-6. DOI:10.1109/MLSP.2018.8516991. [10] Bento J, Ibrahimi M, Montanari A. Learning networks of stochastic differential equations[C]//Proceedings of the 23rd International Conference on Neural Information Processing Systems-Volume 1. December 6-9, 2010, Vancouver, British Columbia, Canada. New York: ACM, 2010: 172-180. DOI: 10.48550/arXiv.1011.0415. [11] Tzen B, Raginsky M. Neural stochastic differential equations: deep latent gaussian models in the diffusion Limit[EB/OL]. 2019: arXiv: 1905.09883. (2019-10-28) [2023-01-11]. https://arxiv.org/abs/1905.09883. [12] Kloppers P H, Greeff J C. Lotka-Volterra model parameter estimation using experiential data[J]. Applied Mathematics and Computation, 2013, 224: 817-825. DOI:10.1016/j.amc.2013.08.093. [13] Wu L F, Wang Y N. Estimation the parameters of Lotka-Volterra model based on grey direct modelling method and its application[J]. Expert Systems With Applications, 2011, 38(6): 6412-6416. DOI:10.1016/j.eswa.2010.09.013. [14] Wu L F, Liu S F, Wang Y N. Grey Lotka-Volterra model and its application[J]. Technological Forecasting and Social Change, 2012, 79(9): 1720-1730. DOI:10.1016/j.techfore.2012.04.020. [15] Xu L, Liu J Y, Zhang G. Pattern formation and parameter inversion for a discrete Lotka-Volterra cooperative system[J]. Chaos, Solitons & Fractals, 2018, 110: 226-231. DOI:10.1016/j.chaos.2018.03.035. [16] Xu L, Lou S S, Xu P Q, et al. Feedback control and parameter invasion for a discrete competitive Lotka-Volterra system[J]. Discrete Dynamics in Nature and Society, 2018, 2018: 1-8. DOI:10.1155/2018/7473208. [17] Shakurov I R, Asadullin R M. Parameter identification for systems of nonlinear differential equations by the example of Lotka-Volterra model[J]. Biophysics, 2014, 59(2): 339-340. [18] Waniewski J, Jedruch W. Individual based modeling and parameter estimation for a Lotka-Volterra system[J]. Mathematical Biosciences, 1999, 157(1/2): 23-36. DOI: 10.1016/S0025-5564(98)10075-5. [19] Luus R. Parameter estimation of Lotka-Volterra problem by direct search optimization[J]. Hungarian Journal of Industrial Chemistry, 1998, 26(4): 287-292. [20] Higham D J. An algorithmic introduction to numerical simulation of stochastic differential equations[J]. SIAM Review, 2001, 43(3): 525-546. DOI:10.1137/S0036144500378302. [21] Feller W. An introduction to probability theory and its applications[M]. 3rd ed. New York: Wiley, 1968. [22] Paszke A, Gross S, Massa F, et al. PyTorch: an imperative style, high-performance deep learning library[EB/OL]. 2019: arXiv: 1912.01703. (2019-12-14) [2023-01-11]. https://arxiv.org/abs/1912.01703. |