[1] 许泽宇,沈占锋,李杨,等. 增强型DeepLab算法和自适应损失函数的高分辨率遥感影像分类[J]. 遥感学报,2022,26(2):406-415.DOI: 10.11834/jrs.20209200. [2] 陈若男, 彭玲, 刘玉菲, 等. 引入空间距离信息的城郊山区道路提取与应用[J]. 中国科学院大学学报, 2022, 39(5): 658-667. DOI: 10.7523/j.ucas.2021.0004. [3] 王寅达,彭玲,陈德跃,等. 基于改进 U-Net 模型的农业大棚遥感提取方法[J/OJ]. 中国科学院大学学报. (2023-06-21) [2023-09-15]. DOI: 10.7523/j.ucas. 2023. 060. [4] Yu J E, Cai Y, Lyu X, et al.Boundary-guided semantic context network for water body extraction from remote sensing images[J]. Remote Sensing, 2023, 15(17): 4325. DOI: 10.3390/rs15174325. [5] Yan G D, Jing H T, Li H, et al.Enhancing building segmentation in remote sensing images: Advanced multi-scale boundary refinement with MBR-HRNet[J]. Remote Sensing, 2023, 15(15): 3766. DOI: 10.3390/rs15153766. [6] 李新娜, 王小鹏, 魏统艺. 自适应形态学与多尺度结合的植被区域遥感图像分割方法[J]. 激光与光电子学进展, 2022, 59(24): 240-246. DOI: 10.3788/LOP202259.2428001. [7] 闵蕾, 高昆, 李维, 等. 光学遥感图像分割技术综述[J]. 航天返回与遥感, 2020, 41(6): 1-13. DOI: 10.3969/j.issn.1009-8518.2020.06.001. [8] Badrinarayanan V, Kendall A, Cipolla R.SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. DOI: 10.1109/TPAMI.2016.2644615. [9] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.10.1007/978-3-319-24574-4_28 [10] Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL].2014: arXiv: 1412.7062.(2014-12-22) [2023-09-15]. https://arxiv.org/abs/1412.7062. [11] Chen L C, Papandreou G, Kokkinos I, et al.DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. DOI: 10.1109/TPAMI.2017.2699184. [12] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL].2017: arXiv:1706.05587.(2017-06-17) [2023-09-15]. https://arxiv.org/abs/1706.05587. [13] Chen L C, Zhu Y K, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[EB/OL].2018: arXiv: 1802.02611.(2018-02-07) [2023-09-15]. https://arxiv.org/abs/1802.02611. [14] Chen F L, Liu H J, Zeng Z H, et al.BES-net: Boundary enhancing semantic context network for high-resolution image semantic segmentation[J]. Remote Sensing, 2022, 14(7): 1638. DOI: 10.3390/rs14071638. [15] Wang X L, Girshick R, Gupta A, et al.Non-local neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018. Salt Lake City, UT, USA. IEEE, 2018: 7794-7803. DOI: 10.1109/cvpr.2018.00813. [16] Liang J L, Deng Y F, Zeng D.A deep neural network combined CNN and GCN for remote sensing scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4325-4338. DOI: 10.1109/JSTARS.2020.3011333. [17] Li Y S, Chen R X, Zhang Y J, et al.Multi-label remote sensing image scene classification by combining a convolutional neural network and a graph neural network[J]. Remote Sensing, 2020, 12(23): 4003. DOI: 10.3390/rs12234003. [18] Peng F F, Lu W, Tan W X, et al.Multi-output network combining GNN and CNN for remote sensing scene classification[J]. Remote Sensing, 2022, 14(6): 1478. DOI: 10.3390/rs14061478. [19] Diao Q, Dai Y P, Zhang C, et al.Superpixel-based attention graph neural network for semantic segmentation in aerial images[J]. Remote Sensing, 2022, 14(2): 305. DOI: 10.3390/rs14020305. [20] Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[EB/OL].2017: arXiv:1710.10903.(2017-10-30) [2023-09-15]. https://arxiv.org/abs/1710.10903. [21] Sun K, Xiao B, Liu D, et al.Deep high-resolution representation learning for human pose estimation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019. Long Beach, CA, USA. IEEE, 2019: 5693-5703, DOI: 10.1109/cvpr.2019.00584. [22] Schlichtkrull M, Kipf T, Bloem P, et al. Modeling relational data with graph convolutional networks. [EB/OL].2017: arXiv: 1703.06103.(2017-03-17) [2023-09-15]. https://arxiv.org/abs/1703.06103. [23] Achanta R, Shaji A, Smith K, et al.SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. DOI: 10.1109/TPAMI.2012.120. [24] Wang J D, Sun K, Cheng T H, et al.Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364. DOI: 10.1109/TPAMI.2020.2983686. [25] 徐存东, 李洪飞, 谷丰佑, 等. 基于无人机遥感影像的盐碱地信息的精准提取方法[J]. 中国农村水利水电, 2021(8): 116-122. DOI: 10.3969/j.issn.1007-2284.2021.08.020. [26] 白俊龙, 王章琼, 闫海涛. K-means聚类引导的无人机遥感图像阈值分类方法[J]. 自然资源遥感, 2021, 33(3): 114-120. DOI: 10.6046/zrzyyg.2020301. [27] 杨栩, 杨润书, 朱大明, 等. 基于遥感数据的耕地信息提取方法研究[J]. 软件导刊, 2018, 17(9): 166-170, 174, 2. DOI: 10.11907/rjdk.182110. [28] Zhang X P, Cheng B, Chen J F, et al.High-resolution boundary refined convolutional neural network for automatic agricultural greenhouses extraction from GaoFen-2 satellite imageries[J]. Remote Sensing, 2021, 13(21): 4237. DOI: 10.3390/rs13214237. [29] Kingma D P, Ba J. Adam: A method for stochastic optimization[EB/OL].2014: arXiv:1412.6980.(2014-12-22) [2023-09-15]. https://arxiv.org/abs/1412.6980. [30] Lin G S, Milan A, Shen C H, et al.RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 5168-5177. DOI: 10.1109/CVPR.2017.549. [31] Jha D, Smedsrud P H, Johansen D, et al.A comprehensive study on colorectal polyp segmentation with ResUNet++, conditional random field and test-time augmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(6): 2029-2040. DOI: 10.1109/jbhi.2021.3049304. [32] Hu J, Shen L, Sun G.Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 7132-7141. DOI: 10.1109/CVPR.2018.00745. [33] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[EB/OJ].2016: arXiv:1609.02907.(2016-09-09) [2023-09-15]. https://arxiv.org/abs/1609.02907. [34] Takikawa T, Acuna D, Jampani V, et al. Gated-scnn: Gated shape cnns for semantic segmentation[EB/OL].2019: arXiv: 1907.05740.(2019-07-12) [2023-09-15]. https://arxiv.org/abs/1907.05740. |