[1] Eisenlohr B N, Tompkins L A, Cathles L M, et al.Mississippi Valley-type deposits: products of brine expulsion by eustatically induced hydrocarbon generation? An example from northwestern Australia[J]. Geology, 1994, 22(4): 315-318. DOI: 10.1130/0091-7613(1994)022<0315:MVTDPO>2.3.CO;2. [2] 常象春, 张金亮. 金顶铅锌矿区中原油地化特征及其意义[J]. 特种油气藏, 2003, 10(5): 15-19. DOI: 10.3969/j.issn.1006-6535.2003.05.005. [3] Kyle J R, Li N.Jinding: A giant tertiary sandstone-hosted Zn-Pb deposit, Yunnan, China[J]. SEG Discovery, 2002(50): 1-16. DOI: 10.5382/SEGnews.2002-50.fea [4] Xue C J, Zeng R, Liu S W, et al.Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn-Pb deposit, western Yunnan, South China: a review[J]. Ore Geology Reviews, 2007, 31(1/2/3/4): 337-359. DOI: 10.1016/j.oregeorev.2005.04.007. [5] Mu L, Hu R Z, Bi X W, et al.In situ trace elements and sulfur isotope analyses of layered sphalerite as a record of ore-forming processes in the world-class Jinding sediment-hosted Zn-Pb Ore Deposit, China[J]. Ore Geology Reviews, 2023, 163: 105794. DOI: 10.1016/j.oregeorev.2023.105794. [6] 薛春纪, 高永宝, 曾荣, 等. 滇西北兰坪盆地金顶超大型矿床有机岩相学和地球化学[J]. 岩石学报, 2007, 23(11): 2889-2900. DOI: 10.3969/j.issn.1000-0569.2007.11.019. [7] 高永宝, 薛春纪, 曾荣. 滇西北兰坪金顶铅锌矿床有机物质地球化学[J]. 地球化学, 2008, 37(03): 223-232. DOI: 10.19700/j.0379-1726.2008.03.004. [8] 张萌. 滇西北兰坪金顶铅锌矿有机成矿作用研究[D]. 北京: 中国地质大学(北京), 2013. [9] 薛春纪, 高永宝, David L Leach.滇西北兰坪金顶可能的古油气藏及对铅锌大规模成矿的作用[J]. 地球科学与环境学报, 2009, 31(3): 221-229. DOI: 10.3969/j.issn.1672-6561.2009.03.001. [10] Song Y C, Hou Z Q, Xue C D, et al.New Mapping of the world-class Jinding Zn-Pb deposit, Lanping Basin, southwest China: genesis of ore host rocks and records of hydrocarbon-rock interaction[J]. Economic Geology, 2020, 115(5): 981-1002. DOI: 10.5382/econgeo.4721. [11] Leach D L, Song Y C, Hou Z Q.The world-class Jinding Zn-Pb deposit: ore formation in an evaporite dome, Lanping Basin, Yunnan, China[J]. Mineralium Deposita, 2017, 52(3): 281-296. DOI: 10.1007/s00126-016-0668-6. [12] Li M L, Liu S A, Xue C J, et al.Zinc, cadmium and sulfur isotope fractionation in a supergiant MVT deposit with bacteria[J]. Geochimica et Cosmochimica Acta, 2019, 265: 1-18. DOI: 10.1016/j.gca.2019.08.018. [13] Yalikun Y, Xue C J, Dai Z J, et al.Microbial structures and possible bacterial sulfide fossils in the giant Jinding Zn-Pb deposit, Yunnan, SW-China: Insights into the genesis of Zn-Pb sulfide mineralization[J]. Ore Geology Reviews, 2018, 92: 61-72. DOI: 10.1016/j.oregeorev.2017.11.004. [14] Lan Q, Hu R Z, Bi X W, et al.The source of organic matter and its role in producing reduced sulfur for the giant sediment-hosted Jinding zinc-lead deposit, Lanping Basin, Yunnan, southwest China[J]. Economic Geology, 2021, 116(7): 1537-1560. DOI: 10.5382/econgeo.4838. [15] Tang Y Y, Bi X W, Fayek M, et al.Microscale sulfur isotopic compositions of sulfide minerals from the Jinding Zn-Pb deposit, Yunnan Province, southwest China[J]. Gondwana Research, 2014, 26(2): 594-607. DOI: 10.1016/j.gr.2013.07.021. [16] 高永宝, 薛春纪, 曾荣. 兰坪金顶铅锌硫化物成矿中硫化氢成因[J]. 地球科学与环境学报, 2008, 30(4): 367-372. DOI: 10.3969/j.issn.1672-6561.2008.04.006. [17] 张瑞杰. 云南金顶超大型铅锌矿床成矿金属来源[D]. 北京: 中国地质大学(北京), 2020. [18] Anderson G M.Kerogen as a source of sulfur in MVT deposits[J]. Economic Geology, 2015, 110(3): 837-840. DOI: 10.2113/econgeo.110.3.837. [19] Kesler S E, Jones H D, Furman F C, et al.Role of crude oil in the genesis of Mississippi Valley-type deposits: evidence from the Cincinnati arch[J]. Geology, 1994, 22(7): 609-612. DOI: 10.1130/0091-7613(1994)022<0609:ROCOIT>2.3.CO;2. [20] Xue C J, Chi G X, Fayek M.Micro-textures and in situ sulfur isotopic analysis of spheroidal and zonal sulfides in the giant Jinding Zn-Pb deposit, Yunnan, China: Implications for biogenic processes[J]. Journal of Asian Earth Sciences, 2015, 103: 288-304. DOI: 10.1016/j.jseaes.2014.07.009. [21] 薛春纪, Chi Guoxiang, 陈毓川, 等. 西南三江兰坪盆地大规模成矿的流体动力学过程——流体包裹体和盆地流体模拟证据[J]. 地学前缘, 2007, 14(5): 147-157. DOI: 10.3321/j.issn: 1005-2321.2007.05.015. [22] 王宇, 薛传东, 杨天南, 等. 青藏高原东南缘金顶铅锌矿集区中新世沉积特征:大陆斜向碰撞带周缘前陆盆地沉积[J]. 岩石学报, 2022, 38(11): 3503-3514. DOI: 10.18654/1000-0569/2022.11.14. [23] 付修根. 金顶铅锌矿床的有机成矿作用[D]. 成都: 成都理工大学, 2005. [24] 李长志, 郭佩, 豆霜, 等.固体沥青形态、成因以及应用研究进展[J/OL].(2023-06-19) [2023-12-24]. 沉积学报. https://doi.org/10.14027/j.issn.1000-0550.2023.048 . [25] Liu J Z, Fu J M, Lu J L.Experimental research on the role of organic matter in formation of sedimentary-reworked gold ore deposits[J]. Science in China (Series B), 1994, 37(7): 859-869. [26] Leach D L, Sangster D F, Kelley K D, et al.Sediment-hosted lead-zinc deposits: A global perspective[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. One Hundredth Anniversary Volume. Littleton: Society of Economic Geologists, 2005: 561-608. DOI: 10.5382/AV100.18. [27] Emsbo P.Gold in Sedex Deposits[M]//Hagemann S G, Brown P E. Gold in 2000. Littleton: Society of Economic Geologists, 2000: 427-436. DOI: 10.5382/Rev.13.13. [28] 王新利, 杨树生, 庞艳春, 等. 云南金顶铅锌矿床成矿物质来源及有机成矿作用[J]. 地球科学与环境学报, 2009, 31(4): 376-382. DOI: 10.3969/j.issn.1672-6561.2009.04.004. [29] 代志杰. 金顶超大型铅锌矿床硫化物菌生结构和细菌化石及成矿学意义[D]. 北京: 中国地质大学(北京), 2016. [30] Detmers J, Brüchert V, Habicht K S, et al.Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes[J]. Applied and Environmental Microbiology, 2001, 67(2): 888-894. DOI: 10.1128/AEM.67.2.888-894.2001. [31] Peters K E, Walters C C, Moldowan J M.Biodegradation parameters[M]//The Biomarker Guide. Cambridge: Cambridge University Press, 2004: 645-708. DOI: 10.1017/cbo9781107326040.007. [32] Wenger L M, Davis C L, Isaksen G H.Multiple controls on petroleum biodegradation and impact on oil quality[J]. SPE Reservoir Evaluation & Engineering, 2002, 5(5): 375-383. DOI: 10.2118/80168-PA. [33] 薛春纪, 陈毓川, 杨建民, 等. 金顶铅锌矿床地质-地球化学[J]. 矿床地质, 2002, 21(3): 270-277, 245. DOI: 10.3969/j.issn.0258-7106.2002.03.008. [34] 包建平, 朱翠山, 马安来, 等. 生物降解原油中生物标志物组成的定量研究[J]. 江汉石油学院学报, 2002, 24(2): 22-26, 5. DOI: 10.3969/j.issn.1000-9752.2002.02.007. [35] Seifert W K, Michael Moldowan J, Demaison G J.Source correlation of biodegraded oils[J]. Organic Geochemistry, 1984, 6: 633-643. DOI: 10.1016/0146-6380(84)90085-8. [36] Xu H Y, Liu Q Y, Zhu D Y, et al.Hydrothermal catalytic conversion and metastable equilibrium of organic compounds in the Jinding Zn/Pb ore deposit[J]. Geochimica et Cosmochimica Acta, 2021, 307: 133-150. DOI: 10.1016/j.gca.2021.05.049. [37] Bost F D, Frontera-Suau R, McDonald T J, et al. Aerobic biodegradation of hopanes and norhopanes in Venezuelan crude oils[J]. Organic Geochemistry, 2001, 32(1): 105-114. DOI: 10.1016/S0146-6380(00)00147-9. [38] Machel H G, Krouse H R, Sassen R.Products and distinguishing criteria of bacterial and thermochemical sulfate reduction[J]. Applied Geochemistry, 1995, 10(4): 373-389. DOI: 10.1016/0883-2927(95)00008-8. [39] Cai C F, Li H X, Li K K, et al.Thermochemical sulfate reduction in sedimentary basins and beyond: A review[J]. Chemical Geology, 2022, 607: 121018. DOI: 10.1016/j.chemgeo.2022.121018. [40] Jiang L, Cai C F, Worden R H, et al.Rare earth element and yttrium (REY) geochemistry in carbonate reservoirs during deep burial diagenesis: Implications for REY mobility during thermochemical sulfate reduction[J]. Chemical Geology, 2015, 415: 87-101. DOI: 10.1016/j.chemgeo.2015.09.010. [41] Huang S J, Huang K K, Li Z M, et al.TSR-derived authigenic calcites in Triassic dolomite, NE Sichuan basin, China—a case study of well HB-1 and well L-2[J]. Journal of Earth Science, 2012, 23(1): 88-96. DOI: 10.1007/s12583-012-0235-8. [42] 刘建明, 刘家军. 滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J]. 矿物学报, 1997, 17(4): 448-456. DOI: 10.16461/j.cnki.1000-4734.1997.04.012. [43] 朱扬明, 郑霞, 刘新社, 等. 储层自生方解石碳同位素值应用于油气运移示踪[J]. 天然气工业, 2007, 27(9): 24-27, 128. DOI: 10.3321/j.issn: 1000-0976.2007.09.007. [44] 沈立建, 刘成林, 王立成. 云南兰坪盆地云龙组上段稀土、微量元素地球化学特征及其环境意义[J]. 地质学报, 2015, 89(11): 2036-2045. DOI: 10.19762/j.cnki.dizhixuebao.2015.11.014. [45] 叶庆同, 胡云中, 杨岳清. 三江地区区域地球化学背景和金银铅锌成矿作用[M]. 北京: 地质出版社, 1992. [46] Mclennan S M.Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[M]//Lipin B R, McKay G A. Geochemistry and Mineralogy of Rare Earth Elements. Berlin: De Gruyter, 1989: 169-200. DOI: 10.1515/9781501509032-010. [47] 蔡春芳. 有机硫同位素组成应用于油气来源和演化研究进展[J]. 天然气地球科学, 2018, 29(2): 159-167. DOI: 10.11764/j.issn.1672-1926.2018.01.013. [48] Cai C F, Tang Y J, Li K K, et al.Relative reactivity of saturated hydrocarbons during thermochemical sulfate reduction[J]. Fuel, 2019, 253: 106-113. DOI: 10.1016/j.fuel.2019.04.148. [49] 罗君烈, 杨荆舟. 滇西特提斯的演化及主要金属矿床成矿作用[M]. 北京: 地质出版社, 1994. [50] Kampschulte A, Strauss H.The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates[J]. Chemical Geology, 2004, 204(3/4): 255-286. DOI: 10.1016/j.chemgeo.2003.11.013. [51] Tang W, Wang J, Wei H Y, et al.Sulfur isotopic evidence for global marine anoxia and low seawater sulfate concentration during the Late Triassic[J]. Journal of Asian Earth Sciences, 2023, 251: 105659. DOI: 10.1016/j.jseaes.2023.105659. [52] 李相材, 王京彬, 祝新友, 等. 滇西兰坪金顶铅锌矿床精细刻画矿化过程:来自硫化物原位微量元素和S-Pb同位素的证据[J]. 岩石学报, 2023, 39(8): 2511-2532. DOI: 10.18654/1000-0569/2023.08.15. [53] 侯增谦, 潘桂棠, 王安建, 等. 青藏高原碰撞造山带: Ⅱ.晚碰撞转换成矿作用[J]. 矿床地质, 2006, 25(5): 521-543. DOI: 10.3969/j.issn.0258-7106.2006.05.001. |