[1] 赵飞宇. Web环境下三维点云数据轻量化处理与模型重构方法研究[D].武汉:武汉理工大学,2019.DOI:10.27381/d.cnki.gwlgu.2019.001869. [2] 郭建雄, 程朋根, 晏启明, 等. Web环境下三维复杂模型的简化与可视化方法研究[J]. 测绘工程, 2019, 28(2): 45-51. DOI: 10.19349/j.cnki.issn1006-7949.2019.02.009. [3] Chen Z G, Zhang T Y, Cao J, et al.Point cloud resampling using centroidal Voronoi tessellation methods[J]. Computer-Aided Design, 2018, 102: 12-21. DOI: 10.1016/j.cad.2018.04.010. [4] He M Y, Li L.Advance in triangular mesh simplification study[C]//2010 11th International Conference on Control Automation Robotics & Vision. Singapore. IEEE, 2010: 1638-1643. DOI: 10.1109/ICARCV.2010.5707949. [5] Hjelle Ø, Dæhlen M.Algorithms for delaunay triangulation[M]//Mathematics and Visualization. Springer Berlin Heidelberg, 2006: 73-93. DOI: 10.1007/3-540-33261-8_4. [6] 刘钊,张涛,施洪刚,等. 利用顶点删除法简化道路三维地形模型[J]. 测绘通报,2014(8):62-64. DOI:10.13474/j.cnki.11-2246.2014.0261. [7] Li M L,Nan L L.Feature-preserving 3D mesh simplification for urban buildings[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2021,173: 135-150. DOI: 10.1016/j.isprsjprs.2021.01.006. [8] Hamann B.A data reduction scheme for triangulated surfaces[J]. Computer Aided Geometric Design, 1994, 11(2): 197-214. DOI: 10.1016/0167-8396(94)90032-9. [9] Hoppe H, DeRose T, Duchamp T, et al. Mesh optimization[C]//Proceedings of the 20th annual conference on Computer graphics and interactive techniques. Anaheim CA. ACM, 1993: 19-26. DOI: 10.1145/166117.166119. [10] Garland M, Heckbert P S.Simplifying surfaces with color and texture using quadric error metrics[C]//Proceedings Visualization '98 (Cat. No.98CB36276). Research Triangle Park, NC, USA. IEEE, 2002: 263-269. DOI: 10.1109/VISUAL.1998.745312. [11] 刘晓平,陈皓. 对基于二次误差的模型简化方法的改进[J].工程图学学报,2005,26(5):40-43.DOI: 10.3969/j.issn.1003-0158.2005.05.007. [12] Ma T, Gong G H, Yan J.A 3D model simplification algorithm based on edge-collapse[C]//IEEE 10th International Conference on Industrial Informatics. Beijing, China. IEEE, 2012: 776-779. DOI: 10.1109/INDIN.2012.6301208. [13] Tang Y, Zhang Q C.Edge-collapse mesh simplification method based on Gauss curvature[C]//2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing. Dalian, China. IEEE, 2011: 660-662. DOI: 10.1109/iThings/CPSCom.2011.93. [14] Yang C, Yu X Q, Ye X N.Cluster-based three-dimensionalnon-uniform mesh simplificationalgorithm[C]//IET International Conference on Smart and Sustainable City 2013 (ICSSC 2013). Shanghai. London: IET, 2013: 208-211. [15] 董艳,张志毅,杨客. 基于顶点重要度的保形网格简化方法研究[J]. 计算机工程与设计,2013,34(5):1889-1895. DOI:10.16208/j.issn1000-7024.2013.05.049. [16] Zhou G Y, Yuan S D, Luo S M.Mesh simplification algorithm based on the quadratic error metric and triangle collapse[J]. IEEE Access, 2020, 8: 196341-196350. DOI: 10.1109/ACCESS.2020.3034075. [17] Asgharian L, Ebrahimnezhad H.Feature-preserving mesh simplification through anisotropic Nyquist-based adaptive sampling of points inside the segmented regions[J]. Journal of Visualization, 2022, 25(4): 819-838. DOI: 10.1007/s12650-022-00828-9. [18] 朱天晓, 闫丰亭, 史志才. 特征保持的区域分级网格简化算法[J]. 图学学报, 2023, 44(3): 570-578. DOI: 10.11996/JG.j.2095-302X.2023030570. [19] 马煜杰, 王山东, 欧阳涛. 基于改进QEM的三维表面模型简化算法[J]. 甘肃科学学报, 2022, 34(2): 28-33, 42. DOI: 10.16468/j.cnki.issn1004-0366.2022.02.006. [20] Lowe D G.Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. DOI: 10.1023/B: VISI.0000029664.99615.94. [21] Li D.Classification and application of sports venue monitoring images using SIFT algorithm[C]//2022 International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS). Bristol, United Kingdom. IEEE, 2022: 118-121. DOI: 10.1109/AIARS57204.2022.00034. [22] 唐坚刚,孙龙杰,杨生远. SIFT结合改进的Harris的图像匹配方法[J]. 计算机应用与软件,2013,30(7):126-131. DOI:10.3969/j.issn.1000-386x.2013.07.035. [23] 刘晓文,付莉娜,徐工. 基于3D-SIFT与SICP的激光点云与影像配准方法[J]. 北京测绘,2022,36(5):557-562. DOI:10.19580/j.cnki.1007-3000.2022.05.006. [24] Jiao Z H, Liu R, Yi P F, et al. A point cloud registration algorithm based on 3D-SIFT[M]// Transactions on Edutainment XV. Berlin, Heidelberg: Springer, 2019: 24-31.10.1007/978-3-662-59351-6_3. [25] Liu M M, Li X D, Dezert J, et al.Generic object recognition based on the fusion of 2D and 3D SIFT descriptors[C]//2015 18th International Conference on Information Fusion (Fusion). Washington, DC, USA. IEEE, 2015: 1085-1092. [26] 赵雄伟,刘本永. 基于3D-SIFT和SVD特征融合的视频行为识别[J].贵州大学学报(自然科学版),2017,34(3):71-76. DOI:10.15958/j.cnki.gdxbzrb.2017.03.15. [27] Lowe D G.Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece. IEEE, 2002: 1150-1157. DOI: 10.1109/ICCV.1999.790410. [28] Lindeberg T.Scale-space theory: A basic tool for analyzing structures at different scales[J]. Journal of Applied Statistics, 1994, 21(1/2): 225-270. DOI: 10.1080/757582976. [29] Shannon C E.A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423. DOI: 10.1002/j.1538-7305.1948.tb01338.x. [30] 廖斌, 肖山竹, 卢焕章. 基于加权局部熵的图像兴趣点检测方法[J]. 激光与红外, 2007, 37(4): 381-383. DOI: 10.3969/j.issn.1001-5078.2007.04.025. [31] 刘泗岩, 廖文和, 刘浩. 基于内角余弦和的三角形正则度评定与网格优化[J]. 机械科学与技术, 2007, 26(4): 420-423. DOI: 10.3321/j.issn: 1003-8728.2007.04.005. |