[1] 汪汉胜, WU Patrick, 许厚泽. 冰川均衡调整(GIA)的研究[J]. 地球物理学进展, 2009, 24(6): 1958-1967. DOI: 10.3969/j.issn.1004-2903.2009.06.005. [2] Chao B F, Dehant V, Gross R S, et al. Space geodesy monitors mass transports in global geophysical fluids[J]. Eos, Transactions American Geophysical Union, 2000, 81(22): 247-250. DOI: 10.1029/00eo00172. [3] Lidberg M, Johansson J M, Scherneck H G, et al. An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia[J]. Journal of Geodesy, 2007, 81(3): 213-230. DOI: 10.1007/s00190-006-0102-4. [4] Wolf D, Klemann V, Wünsch J, et al. A reanalysis and reinterpretation of geodetic and geological evidence of glacial-isostatic adjustment in the Churchill region, Hudson Bay[J]. Surveys in Geophysics, 2006, 27(1): 19-61. DOI: 10.1007/s10712-005-0641-x. [5] Khan S A, Wahr J, Leuliette E, et al. Geodetic measurements of postglacial adjustments in Greenland[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B2): B02402. DOI: 10.1029/2007jb004956. [6] Jiang Y, Dixon T H, Wdowinski S. Accelerating uplift in the North Atlantic region as an indicator of ice loss[J]. Nature Geoscience, 2010, 3: 404-407. DOI: 10.1038/ngeo845. [7] Khan S A, Wahr J, Bevis M, et al. Spread of ice mass loss into northwest Greenland observed by GRACE and GPS[J]. Geophysical Research Letters, 2010, 37(6): L06501. DOI: 10.1029/2010gl042460. [8] Wu X P, Heflin M B, Schotman H, et al. Simultaneous estimation of global present-day water transport and glacial isostatic adjustment[J]. Nature Geoscience, 2010, 3: 642-646. DOI: 10.1038/ngeo938. [9] Thomas I D, King M A, Bentley M J, et al. Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations[J]. Geophysical Research Letters, 2011, 38(22): L22302. DOI: 10.1029/2011gl049277. [10] Sasgen I, Klemann V, Martinec Z. Towards the inversion of GRACE gravity fields for present-day ice-mass changes and glacial-isostatic adjustment in North America and Greenland[J]. Journal of Geodynamics, 2012, 59/60: 49-63. DOI: 10.1016/j.jog.2012.03.004. [11] Gunter B C, Didova O, Riva R E M, et al. Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change[J]. The Cryosphere, 2014, 8(2): 743-760. DOI: 10.5194/tc-8-743-2014. [12] Wake L M, Lecavalier B S, Bevis M. Glacial isostatic adjustment (GIA) in Greenland: a review[J]. Current Climate Change Reports, 2016, 2(3): 101-111. DOI: 10.1007/s40641-016-0040-z. [13] Argus D F, Peltier W R, Blewitt G, et al. The viscosity of the top third of the lower mantle estimated using GPS, GRACE, and relative sea level measurements of glacial isostatic adjustment[J]. Journal of Geophysical Research (Solid Earth), 2021, 126(5): e2020JB021537. DOI: 10.1029/2020JB021537. [14] Jiang Y, Wu X P, van den Broeke M R, et al. Assessing global present day surface mass transport and glacial isostatic adjustment from inversion of geodetic observations[J]. Journal of Geophysical Research (Solid Earth), 2021, 126(5): e2020JB020713. DOI: 10.1029/2020JB020713. [15] Vishwakarma B D, Horwath M, Groh A, et al. Accounting for GIA signal in GRACE products[J]. Geophysical Journal International, 2021, 228(3): 2056-2060. DOI: 10.1093/gji/ggab464. [16] Steffen H, Denker H, Müller J. Glacial isostatic adjustment in Fennoscandia from GRACE data and comparison with geodynamical models[J]. Journal of Geodynamics, 2008, 46(3/4/5): 155-164. DOI: 10.1016/j.jog.2008.03.002. [17] Tamisiea M E, Mitrovica J X, Davis J L. GRACE gravity data constrain ancient ice geometries and continental dynamics over Laurentia[J]. Science, 2007, 316(5826): 881-883. DOI: 10.1126/science.1137157. [18] van der Wal W, Wu P, Sideris M G, et al. Use of GRACE determined secular gravity rates for glacial isostatic adjustment studies in North-America[J]. Journal of Geodynamics, 2008, 46(3/4/5): 144-154. DOI: 10.1016/j.jog.2008.03.007. [19] 高春春, 陆洋, 史红岭,等. 联合GRACE和ICESat数据分离南极冰川均衡调整(GIA)信号[J]. 地球物理学报, 2016, 59(11):4007-4021. DOI: 10.6038/cjg20161107. [20] 张腾宇, 金双根. 利用GRACE、InSAR和GPS观测估计青藏高原冰后回弹[C]//中国地球物理学会. 中国地球物理学会第二十八届年会论文集. 北京: 2012: 655. [21] Chen J L, Wilson C R, Tapley B D, et al. Patagonia Icefield melting observed by gravity recovery and climate experiment (GRACE)[J]. Geophysical Research Letters, 2007, 34(22): L22501. DOI: 10.1029/2007gl031871. [22] Foresta L, Gourmelen N, Weissgerber F, et al. Heterogeneous and rapid ice loss over the Patagonian Ice Fields revealed by CryoSat-2 swath radar altimetry[J]. Remote Sensing of Environment, 2018, 211: 441-455. DOI: 10.1016/j.rse.2018.03.041. [23] Braun M H, Malz P, Sommer C, et al. Constraining glacier elevation and mass changes in South America[J]. Nature Climate Change, 2019, 9: 130-136. DOI: 10.1038/s41558-018-0375-7. [24] Jiao J S, Zhang Y Z, Yin P, et al. Changing Moho beneath the Tibetan Plateau revealed by GRACE observations[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(6): 5907-5923. DOI: 10.1029/2018jb016334. [25] Shen Y, Wang Q Y, Rao W L, et al. Spatial distribution characteristics and mechanism of nonhydrological time-variable gravity in China continent[J]. Earth and Planetary Physics, 2022, 6(1): 96-107. DOI: 10.26464/epp2022009. [26] Sun P C, Guo C S, Wei D P. GRACE data explore Moho change characteristics beneath the South America continent near the Chile triple junction[J]. Remote Sensing, 2022, 14(4): 924. DOI: 10.3390/rs14040924. [27] Richter A, Groh A, Horwath M, et al. The rapid and steady mass loss of the Patagonian icefields throughout the GRACE era: 2002-2017[J]. Remote Sensing, 2019, 11(8): 909. DOI: 10.3390/rs11080909. [28] Georgieva V, Melnick D, Schildgen T F, et al. Tectonic control on rock uplift, exhumation, and topography above an oceanic ridge collision: Southern Patagonian Andes (47°S), Chile[J]. Tectonics, 2016, 35(6): 1317-1341. DOI: 10.1002/2016tc004120. [29] Russo R M, Luo H P, Wang K L, et al. Lateral variation in slab window viscosity inferred from global navigation satellite system (GNSS): observed uplift due to recent mass loss at Patagonia ice fields[J]. Geology, 2022, 50(1): 111-115. DOI: 10.1130/g49388.1. [30] Bourgois J, Frutos J, Cisternas M E. The internal versus external dynamics in building the Andes (46°30'-47°30'S) at the Patagonia slab window, with special references to the lower Miocene morphotectonic frontline: a review[J]. Earth-Science Reviews, 2021, 223: 103822. DOI: 10.1016/j.earscirev.2021.103822. [31] Chen J L, Wilson C R, Tapley B D, et al. GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake[J]. Geophysical Research Letters, 2007, 34(13): L13302. DOI: 10.1029/2007gl030356. [32] Chen J L, Wilson C R, Li J, et al. Reducing leakage error in GRACE-observed long-term ice mass change: a case study in West Antarctica[J]. Journal of Geodesy, 2015, 89(9): 925-940. DOI: 10.1007/s00190-015-0824-2. [33] Lange H, Casassa G, Ivins E R, et al. Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth models[J]. Geophysical Research Letters, 2014, 41(3): 805-812. DOI: 10.1002/2013gl058419. [34] Blewitt G, Hammond W, Kreemer C. Harnessing the GPS data explosion for interdisciplinary science[J]. Eos, 2018, 99. DOI: 10.1029/2018eo104623. [35] Ndehedehe C E, Ferreira V G. Assessing land water storage dynamics over South America[J]. Journal of Hydrology, 2020, 580: 124339. DOI: 10.1016/j.jhydrol.2019.124339. [36] 孙文科, 长谷川崇, 张新林, 等. 高斯滤波在处理GRACE数据中的模拟研究:西藏拉萨的重力变化率[J]. 中国科学:地球科学, 2011, 41(9): 1327-1333. DOI: 10.1360/zd-2011-41-9-1327. [37] Lenaerts J T M, van den Broeke M R, van Wessem J M, et al. Extreme precipitation and climate gradients in Patagonia revealed by high-resolution regional atmospheric climate modeling[J]. Journal of Climate, 2014, 27(12): 4607-4621. DOI: 10.1175/jcli-d-13-00579.1. [38] Hu J S, Liu L J, Gurnis M. Southward expanding plate coupling due to variation in sediment subduction as a cause of Andean growth[J]. Nature Communications, 2021, 12: 7271. DOI: 10.1038/s41467-021-27518-8. [39] Klemann V, Martinec Z, Ivins E R. Glacial isostasy and plate motion[J]. Journal of Geodynamics, 2008, 46(3/4/5): 95-103. DOI: 10.1016/j.jog.2008.04.005. [40] Thomson S N, Brandon M T, Tomkin J H, et al. Glaciation as a destructive and constructive control on mountain building[J]. Nature, 2010, 467: 313-317. DOI: 10.1038/nature09365. |