[1] Qiu J. China:the third pole[J]. Nature, 2008, 454(7203):393-396. [2] Molnar P, Tapponnier P. Cenozoic tectonics of Asia:effects of a continental collision. Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 1975, 189(4201):419-426. [3] Royden L H, Burchfiel B C, van der Hilst R D. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321(5892):1054-1058. [4] Sun W, Wang Q, Li H, et al. Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau:geodetic evidence of increasing crustal thickness[J]. Geophysical Research Letters, 2009, 36(2):206-218. [5] Yi S, Freymueller J T, Sun W. How fast is the middle-lower crust flowing in eastern Tibet? A constraint from geodetic observations:flow in eastern Tibet[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(9):6903-6915. [6] 王琪,张培震,牛之俊,等. 中国大陆现今地壳运动和构造变形[J]. 中国科学:D辑:地球科学, 2001, 31(7):529-536. [7] Métivier F, Gaudemer Y, Tapponnier P, et al. Mass accumulation rates in Asia during the Cenozoic[J]. Geophysical Journal of the Royal Astronomical Society, 1999, 137(2):280-318. [8] Zhang G, Yao T, Xie H, et al. Increased mass over the Tibetan Plateau:from lakes or glaciers?[J]. Geophysical Research Letters, 2013, 40(10):2125-2130. [9] Chambers D P. Observing seasonal steric sea level variations with GRACE and satellite altimetry[J]. Journal of Geophysical Research, 2006,111(C03010). Doi:10.1029/2005JC002914. [10] Luthcke S B, Zwally H J, Abdalati W, et al. Recent greenland ice mass loss by drainage system from satellite gravity observations[J]. Science, 2006, 314(5803):1286-1289. [11] Rodell M, Velicogna I, Famiglietti J S. Satellite-based estimates of groundwater depletion in India[J]. Nature, 2009, 460(7258):999-1002. [12] Jeffreys H. The earth:its origin, history and physical constitution[M]. Cambridge:Cambridge University Press, 1952:392. [13] Wahr J, Molenaar M, Bryan F. Time variability of the Earth's gravity field:hydrological and oceanic effects and their possible detection using GRACE[J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B12):30205-30229. [14] Swenson S, Wahr J. Post-processing removal of correlated errors in GRACE data[J]. Geophysical Research Letters, 2006, 33(8):L08402. [15] Kusche J, Schmidt R, Petrovic S, et al. Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model[J]. Journal of Geodesy, 2009, 83(10):903-913. [16] Landerer F W, Swenson S C. Accuracy of scaled GRACE terrestrial water storage estimates[J]. Water Resources Research, 2012, 48(4). Doi:10.1029/2011W R011453. [17] Jacob T, Wahr J, Pfeffer W T, et al. Recent contributions of glaciers and ice caps to sea level rise[J]. Nature, 2012, 482(7386):514-518. [18] Yi S, Sun W K. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(3):2504-2517. [19] Li B, Rodell M, Zaitchik B F, et al. Assimilation of GRACE terrestrial water storage into a land surface model:evaluation and potential value for drought monitoring in western and central Europe[J]. Journal of Hydrology, 2012, 50(446/447):103-115. [20] Schmidt R, Schwintzer P, Flechtner F, et al. GRACE observations of changes in continental water storage[J]. Global and Planetary Change, 2006, 50(1/2):112-126. [21] Yao T, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9):663-667. [22] Zhan J, Shi H, Wang Y, et al. Complex Principal Component Analysis of Mass Balance Change on Qinghai-Tibet Plateau[J]. The Cryosphere Discussions, 2017, 11(3):1487-1499. [23] 高东, 牛海山. 青藏高原夏季降水与东亚、南亚夏季风相关程度的空间格局[J]. 中国科学院大学学报, 2018, 35(4):500-505. [24] Meng F, Su F, Li Y, et al. Changes in terrestrial water storage during 2003-2014 and possible causes in Tibetan Plateau[J]. Journal of Geophysical Research:Atmospheres, 2019, 124(6):2909-2931. [25] Zou F, Tenzer R, Jin S. Water storage variations in Tibet from GRACE, ICESat, and hydrological data[J]. Remote Sensing, 2019, 11(9):1103. Doi:10.3390/rs11091103. [26] Zhang G, Yao T, Shum C K, et al. Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin[J]. Geophysical Research Letters, 2017, 44(11):5550-5560. [27] Ronghua M A, Guishan Y, Hongtao D, et al. China's lakes at present:number, area and spatial distribution[J]. Science China Earth Sciences, 2011, 54(2):283-289. [28] Song C, Huang B, Ke L. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data[J]. Remote Sensing of Environment, 2013, 135(4):25-35. [29] Wang Q, Yi S, Sun W. The changing pattern of lake and its contribution to increased mass in the Tibetan Plateau derived from GRACE and ICESat data[J]. Geophysical Journal International, 2016, 207(1):528-541. [30] Yi S, Song C, Wang Q, et al. The potential of GRACE gravimetry to detect the heavy rainfall-induced impoundment of a small reservoir in the upper Yellow River[J]. Water Resources Research, 2017, 53(8):6562-6578. [31] Crétaux J F, Jelinski W, Calmant S, et al. SOLS:a lake database to monitor in the near real time water level and storage variations from remote sensing data[J]. Advances in Space Research, 2011, 47(9):1497-1507. [32] Lei Y, Yao T, Yang K, et al. Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology[J]. Geophysical Research Letters, 2017, 44(2):892-900. [33] Yi S, Wang Q, Sun W. Basin mass dynamic changes in China from GRACE based on a multibasin inversion method[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(5):3782-3803. [34] Ge S, Wu Q B, Lu N, et al. Groundwater in the Tibet Plateau, western China[J]. Geophysical Research Letters, 2008, 35(18):80-86. [35] Cheng G, Jin H. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China[J]. Hydrogeology Journal, 2013, 21(1):5-23. [36] Chao B F, Wu Y H, Li Y S. Impact of artificial reservoir water impoundment on global sea level[J]. Science, 2008, 320(5873):212-214. [37] Xiang L, Wang H, Steffen H, et al. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data[J]. Earth and Planetary Science Letters, 2016, 449:228-239. [38] 叶庆华, 程维明, 赵永利, 等. 青藏高原冰川变化遥感监测研究综述[J].地球信息科学学报, 2016, 18(7):920-930. [39] Matsuo K, Heki K. Time-variable ice loss in Asian high mountains from satellite gravimetry[J]. Earth and Planetary Science Letters, 2010, 290(1-2):30-36. [40] Bolch T, Pieczonka T, Benn D I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery[J]. The Cryosphere, 2011, 5(2):349-358. [41] Nuimura T, Fujita K, Yamaguchi S, et al. Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992-2008[J]. Journal of Glaciology, 2012, 58(210):648-656. [42] Berthier E, Arnaud Y, Kumar R, et al. Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India)[J]. Remote Sensing of Environment, 2007, 108(3):327-338. [43] Gardelle J, Berthier E, Arnaud Y. Slight mass gain of Karakoram glaciers in the early twenty-first century[J]. Nature Geosice, 2012, 5(5):322-325. [44] Cogley, Graham J. Geodetic and direct mass-balance measurements:comparison and joint analysis[J]. Annals of Glaciology, 2009, 50(50):96-100. [45] Fujita K, Nuimura T. Spatially heterogeneous wastage of Himalayan glaciers[J]. Proceedings of the National Academy of Sciences, 2011, 108(34):14011-14014. [46] Bolch T, Kulkarni A, Kääb A, et al. The state and fate of Himalayan glaciers[J]. Science, 2012, 336(6079):310-314. [47] Wang Q, Yi S, Chang L, et al. Large-scale seasonal changes in glacier thickness across high mountain Asia[J]. Geophysical Research Letters, 2017, 44(22):10427-10435. [48] Wang Q, Yi S, Sun W. Precipitation-driven glacier changes in the Pamir and Hindu Kush mountains[J]. Geophysical Research Letters, 2017, 44(6):2817-2824. [49] Pohl E, Gloaguen R, Andermann C, et al. Glacier melt buffers river runoff in the Pamir Mountains[J]. Water Resources Research, 2017, 53(3):2467-2489. [50] 常乐, 钱安, 易爽, 等. 基于卫星重力、卫星测高和温盐度综合数据的中国近海各区域海平面变化[J]. 中国科学院大学学报, 2017, 34(3):371-379. [51] 张健, 石耀霖. 中国西部地区重力位能与板内变形动力[J]. 中国科学院大学学报, 2001, 18(1):43-50. [52] Royden L H. Surface Deformation and Lower Crustal Flow in Eastern Tibet[J]. Science, 1997, 276(5313):788-790. [53] Clark M K, Royden L H. Topographic ooze:building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8):703-706. [54] Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon[J]. Reviews of Geophysics, 1993, 31(4):357. [55] Fielding E J. Tibet uplift and erosion[J]. Tectonophysics, 1996, 260(1/3):55-84. [56] Marotta A M, Fernandez M, Sabadini R. Mantle unrooting in collisional settings[J]. Tectonophysics, 1998, 296(1):31-46. [57] Pail R, Bingham R, Braitenberg C, et al. Science and user needs for observing global mass transport to understand global change and to benefit society[J]. Surveys in Geophysics, 2015, 36(6):743-772. [58] Jiao J, Zhang Y Z, Peng Y, et al. Changing Moho Beneath the Tibetan Plateau revealed by GRACE observations[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(6):5907-5923. |