[1] 周建, 徐海芹. 一种基于核密度估计的图像边缘检测方法[J]. 计算机科学, 2018, 45(S1): 239-241. [2] Harvey A, Oryshchenko V.Kernel density estimation for time series data[J]. International Journal of Forecasting, 2012, 28(1): 3-14. DOI: 10.1016/j.ijforecast.2011.02.016. [3] Tran T N, Wehrens R, Buydens L M C. KNN-kernel density-based clustering for high-dimensional multivariate data[J]. Computational Statistics & Data Analysis, 2006, 51(2): 513-525. DOI: 10.1016/j.csda.2005.10.001. [4] 李存华, 孙志挥, 陈耿, 等. 核密度估计及其在聚类算法构造中的应用[J]. 计算机研究与发展, 2004, 41(10): 1712-1719. [5] Parzen E.On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3): 1065-1076. DOI: 10.1214/aoms/1177704472. [6] Rosenblatt M.Remarks on some nonparametric estimates of a density function[J]. The Annals of Mathematical Statistics, 1956, 27(3): 832-837. DOI: 10.1214/aoms/1177728190. [7] Silverman B W.Density estimation for statistics and data analysis[M]. London: Chapman and Hall, 1986. [8] Härdle W, Werwatz A, Müller M, et al.Nonparametric and Semiparametric Models[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. DOI: 10.1007/978-3-642-17146-8. [9] Xiong S F.The reconstruction approach: from interpolation to regression[J]. Technometrics, 2021, 63(2): 225-235. DOI: 10.1080/00401706.2020.1764869. [10] Santner T J, Williams B J, Notz W I.The Design and Analysis of Computer Experiments[M]. New York, NY: Springer New York, 2018. DOI: 10.1007/978-1-4939-8847-1. [11] Mu W Y, Xiong S F.A class of space-filling designs and their projection properties[J]. Statistics & Probability Letters, 2018, 141: 129-134. DOI: 10.1016/j.spl.2018.06.002. [12] Wu Y, Xiong S F.Kernel reconstruction learning[J]. Neurocomputing, 2023, 522: 1-10. DOI: 10.1016/j.neucom.2022.12.015. [13] Dick J.On quasi-monte Carlo rules achieving higher order convergence[C]//L' Ecuyer P, Owen A. Monte Carlo and Quasi-Monte Carlo Methods 2008. Berlin, Heidelberg: Springer, 2009: 73-96. DOI:10.1007/978-3-642-04107-5_5 [14] Tseng P.Convergence of a block coordinate descent method for nondifferentiable minimization[J]. Journal of Optimization Theory and Applications, 2001, 109(3): 475-494. DOI: 10.1023/A: 1017501703105. [15] Kumar A, Vembu S, Menon A K, et al.Beam search algorithms for multilabel learning[J]. Machine Learning, 2013, 92(1): 65-89. DOI: 10.1007/s10994-013-5371-6. [16] Neal R M.MCMC using Hamiltonian dynamics[M]//Handbook of Markov Chain Monte Carlo. New York: Chapman and Hall/CRC, 2011: 113-162. DOI: 10.1201/b10905-6. [17] Sherlock C, Roberts G.Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets[J]. Bernoulli, 2009, 15(3): 774-798. DOI: 10.3150/08-BEJ176. [18] Gelman A, Gilks W R, Roberts G O.Weak convergence and optimal scaling of random walk Metropolis algorithms[J]. The Annals of Applied Probability, 1997, 7(1): 110-120. DOI: 10.1214/aoap/1034625254. [19] Ram P, Gray A G.Density estimation trees[C]//Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. August 21 - 24, 2011, San Diego, California, USA. ACM, 2011: 627-635. DOI: 10.1145/2020408.2020507. [20] Kullback S, Leibler R A.On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1): 79-86. DOI: 10.1214/aoms/1177729694. [21] Hall P.Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density[J]. The Annals of Statistics, 1992, 20(2): 675-694. DOI: 10.1214/aos/1176348651. [22] Phillips S J, Anderson R P, Schapire R E.Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3-4): 231-259. DOI: 10.1016/j.ecolmodel.2005.03.026. |