[1] van de Kerkhof M A, Benschop J P H, Banine V Y. Lithography for now and the future[J]. Solid-State Electronics, 2019, 155: 20-26. DOI: 10.1016/j.sse.2019.03.006. [2] Morgan C G, Naulleau P P, Rekawa S B, et al.Removal of surface contamination from EUV mirrors using low-power downstream plasma cleaning[C]//SPIE Proceedings", "Extreme Ultraviolet (EUV) Lithography. San Jose, California. SPIE, 2010: 76361Q. DOI: 10.1117/12.846386. [3] Dolgov A, Lopaev D, Rachimova T, et al.Comparison of H2 and He carbon cleaning mechanisms in extreme ultraviolet induced and surface wave discharge plasmas[J]. Journal of Physics D: Applied Physics, 2014, 47(6): 065205. DOI: 10.1088/0022-3727/47/6/065205. [4] Braginsky O V, Kovalev A S, Lopaev D V, et al.Removal of amorphous C and Sn on Mo: Si multilayer mirror surface in Hydrogen plasma and afterglow[J]. Journal of Applied Physics, 2012, 111(9): 093304. DOI: 10.1063/1.4709408. [5] Beckers, Ven, Horst, et al. EUV-induced plasma: A peculiar phenomenon of a modern lithographic technology[J]. Applied Sciences, 2019, 9(14): 2827. DOI: 10.3390/app9142827. [6] van der Velden M H L, Brok W J M, van der Mullen J J A M, et al. Particle-in-cell Monte Carlo simulations of an extreme ultraviolet radiation driven plasma[J]. Physical Review E, 2006, 73(3): 036406. DOI: 10.1103/physreve.73.036406. [7] Astakhov D I, Goedheer W J, Lee C J, et al.Exploring the electron density in plasma induced by EUV radiation: II. Numerical studies in argon and hydrogen[J]. Journal of Physics D: Applied Physics, 2016, 49(29): 295204. DOI: 10.1088/0022-3727/49/29/295204. [8] van der Horst R M, Beckers J, Osorio E A, et al. Exploring the electron density in plasma induced by EUV radiation: I. Experimental study in hydrogen[J]. Journal of Physics D: Applied Physics, 2016, 49(14): 145203. DOI: 10.1088/0022-3727/49/14/145203. [9] Brandt D C, Fomenkov I V, Farrar N R, et al.LPP EUV source readiness for NXE 3300B[C]//SPIE Proceedings", "Extreme Ultraviolet (EUV) Lithography V. San Jose, California, USA. SPIE, 2014: 69-76. DOI: 10.1117/12.2048184. [10] van der Horst R M. Electron dynamics in EUV-induced plasmas[D]. Eindhoven University of Technology: Eindhoven, The Netherlands, 2015. [11] van de Kerkhof M, Yakunin A M, Astakhov D, et al. EUV-induced hydrogen plasma: Pulsed mode operation and confinement in scanner[J]. Nanopatterning, Materials, and Metrology, 2021, 20(3): 033801. DOI: 10.1117/1.jmm.20.3.033801. [12] van de Ven T H M. Ion fluxes towards surfaces exposed to EUV-induced plasmas[D]. Eindhoven University of Technology: Eindhoven, The Netherlands, 2018. [13] Yakshinskiy B V, Wasielewski R, Loginova E, et al.Carbon accumulation and mitigation processes, and secondary electron yields of ruthenium surfaces[C]//SPIE Proceedings", "Emerging Lithographic Technologies XI. San Jose, CA. SPIE, 2007: 65172Z. DOI: 10.1117/12.711785. [14] Henke B L, Smith J A, Attwood D T.0.1-10-keV x-ray-induced electron emissions from solids—Models and secondary electron measurements[J]. Journal of Applied Physics, 1977, 48(5): 1852-1866. DOI: 10.1063/1.323938. [15] Birdsall C K, Langdon A B.Plasma Physics via Computer Simulation[M]. Boca Raton: CRC Press, 2018. DOI: 10.1201/9781315275048. [16] Chung Y M, Lee E M, Masuoka T, et al.Dissociative photoionization of H2 from 18 to 124 eV[J]. The Journal of Chemical Physics, 1993, 99(2): 885-889. DOI: 10.1063/1.465352. [17] Kossmann H, Schwarzkopf O, Kammerling B, et al.Photoionisation cross section of H2[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1989, 22(14): L411-L414. DOI: 10.1088/0953-4075/22/14/004. [18] van der Velden M H L, Brok W J M, van der Mullen J J A M, et al. Kinetic simulation of an extreme ultraviolet radiation driven plasma near a multilayer mirror[J]. Journal of Applied Physics, 2006, 100(7): 073303. DOI: 10.1063/1.2356085. [19] Yoon J S, Song M Y, Han J M, et al.Cross sections for electron collisions with hydrogen molecules[J]. Journal of Physical and Chemical Reference Data, 2008, 37(2): 913-931. DOI: 10.1063/1.2838023. [20] Tabata T, Shirai T.Analytic cross sections for collisions of H+, H2+, H3+, H, H2, and H-with hydrogen molecules[J]. Atomic Data and Nuclear Data Tables, 2000, 76(1): 1-25. DOI: 10.1006/adnd.2000.0835. [21] Nanbu K.Probability theory of electron-molecule, ion-molecule, molecule-molecule, and Coulomb collisions for particle modeling of materials processing plasmas and cases[J]. IEEE Transactions on Plasma Science, 2000, 28(3): 971-990. DOI: 10.1109/27.887765. [22] Economou D J.Hybrid simulation of low temperature plasmas: A brief tutorial[J]. Plasma Processes and Polymers, 2017, 14(1/2): 1600152. DOI: 10.1002/ppap.201600152. [23] Hagelaar G J M, Kroesen G M W. Speeding up fluid models for gas discharges by implicit treatment of the electron energy source term[J]. Journal of Computational Physics, 2000, 159(1): 1-12. DOI: 10.1006/jcph.2000.6445. [24] Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science Technology, 2005, 14(4): 722-733. DOI: 10.1088/0963-0252/14/4/011. [25] Ellis H W, Pai R Y, McDaniel E W, et al. Transport properties of gaseous ions over a wide energy range[J]. Atomic Data and Nuclear Data Tables, 1976, 17(3): 177-210. DOI: 10.1016/0092-640X(76)90001-2. |