[1] Bartolo D, Josserand C, Bonn D.Retraction dynamics of aqueous drops upon impact on non-wetting surfaces[J]. Journal of Fluid Mechanics, 2005, 545: 329-338. DOI: 10.1017/S0022112005007184. [2] 王太, 孙亦铁, 李晟瑞, 等. 液滴撞击高温球面的动力学及传热特性分析[J]. 力学学报, 2025, 57(3): 593-604. DOI: 10.6052/0459-1879-24-521. [3] Breitenbach J, Roisman I V, Tropea C.From drop impact physics to spray cooling models: a critical review[J]. Experiments in Fluids, 2018, 59(3): 55. DOI: 10.1007/s00348-018-2514-3. [4] Nan L, Zhang H D, Weitz D A, et al.Development and future of droplet microfluidics[J]. Lab on a Chip, 2024, 24(5): 1135-1153. DOI: 10.1039/D3LC00729D. [5] Lohse D.Fundamental fluid dynamics challenges in inkjet printing[J]. Annual Review of Fluid Mechanics, 2022, 54: 349-382. DOI: 10.1146/annurev-fluid-022321-114001. [6] Gao F, Yi H, Qi L H, et al.Weakly charged droplets fundamentally change impact dynamics on flat surfaces[J]. Soft Matter, 2019, 15(28): 5548-5553. DOI: 10.1039/C9SM00895K. [7] Moreira A L N, Moita A S, Panão M R. Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful?[J]. Progress in Energy and Combustion Science, 2010, 36(5): 554-580. DOI: 10.1016/j.pecs.2010.01.002. [8] Bixler G D, Bhushan B.Fluid drag reduction with shark-skin riblet inspired microstructured surfaces[J]. Advanced Functional Materials, 2013, 23(36): 4507-4528. DOI: 10.1002/adfm.201203683. [9] 胡定华, 朱劭恺, 于坤洋, 等. 液滴撞击振动壁面传热特性影响的数值研究[J]. 工程热物理学报, 2024, 45(8): 2466-2474. [10] Lv C J, Hao P F, Zhang X W, et al.Drop impact upon superhydrophobic surfaces with regular and hierarchical roughness[J]. Applied Physics Letters, 2016, 108(14): 141602. DOI: 10.1063/1.4945662. [11] Langley K R, Li E Q, Vakarelski I U, et al.The air entrapment under a drop impacting on a nano-rough surface[J]. Soft Matter, 2018, 14(37): 7586-7596. DOI: 10.1039/C8SM01070F. [12] Gordillo J M, Riboux G, Quintero E S.A theory on the spreading of impacting droplets[J]. Journal of Fluid Mechanics, 2019, 866: 298-315. DOI: 10.1017/jfm.2019.117. [13] Yuan Z C, Matsumoto M, Kurose R.Directional rebounding of a droplet impinging hydrophobic surfaces with roughness gradients[J]. International Journal of Multiphase Flow, 2021, 138: 103611. DOI: 10.1016/j.ijmultiphaseflow.2021.103611. [14] Wang L Z, Feng J M, Dang T, et al.Dynamics of oil droplet impacting and wetting on the inclined surfaces with different roughness[J]. International Journal of Multiphase Flow, 2021, 135: 103501. DOI: 10.1016/j.ijmultiphaseflow.2020.103501. [15] Safavi M, Nourazar S S.Experimental, analytical, and numerical study of droplet impact on a horizontal fiber[J]. International Journal of Multiphase Flow, 2019, 113: 316-324. DOI: 10.1016/j.ijmultiphaseflow.2018.10.018. [16] Zhang B, Sanjay V, Shi S L, et al.Impact forces of water drops falling on superhydrophobic surfaces[J]. Physical Review Letters, 2022, 129(10): 104501. DOI: 10.1103/PhysRevLett.129.104501. [17] Wang L, Wang X, Yan Y Y.An investigation of droplet impingement on a conical obstacle[J]. Thermal Science and Engineering Progress, 2023, 37: 101586. DOI: 10.1016/j.tsep.2022.101586. [18] 杜作豪, 秦智鹏. 液滴撞击平面圆槽微结构[C]//第十三届全国流体力学学术会议摘要集. 哈尔滨, 2024: 507. DOI: 10.26914/c.cnkihy.2024.048640. [19] Rozhkov A, Prunet-Foch B, Vignes-Adler M.Impact of water drops on small targets[J]. Physics of Fluids, 2002, 14(10): 3485-3501. DOI: 10.1063/1.1502663. [20] Juarez G, Gastopoulos T, Zhang Y B, et al.Splash control of drop impacts with geometric targets[J]. Physical Review E, 2012, 85(2): 026319. DOI: 10.1103/PhysRevE.85.026319. [21] 姚程炜, 田远思, 李二强. 气-液复合液滴撞击超疏水壁面的实验研究[J]. 应用力学学报, 2024, 41(3) : 698-707. DOI: 10.11776/j.issn.1000-4939.2024.03.024. [22] Nasiri M, Amini G, Moreau C, et al.Hollow droplet impact on a solid surface[J]. International Journal of Multiphase Flow, 2021, 143: 103740. DOI: 10.1016/j.ijmultiphaseflow.2021.103740. [23] Nasiri M, Amini G, Moreau C, et al.Flattening of a hollow droplet impacting a solid surface[J]. Journal of Fluid Mechanics, 2023, 962: A1. DOI: 10.1017/jfm.2023.182. [24] Wang L, Thoraval M J.Air-in-liquid compound drop impact onto a pool[J]. Physics of Fluids, 2022, 34(10): 102101. DOI: 10.1063/5.0086745. [25] Sayyari H, Peiravi M M, Alinejad J.Surveying the effects of concave obstacles with different edge walls on hollow glycerin droplet impacting using the volume of fluid approach[J]. Advances in Mechanical Engineering, 2022, 14(11): 1-11. DOI: 10.1177/16878132221133712. [26] Yang L K, Tang L M, Zhou G Z.Topological change of a hollow droplet impacting onto a cylindrical super-hydrophobic target: a numerical study[J]. International Journal of Multiphase Flow, 2025, 188: 105227. DOI: 10.1016/j.ijmultiphaseflow.2025.105227. [27] Zhou Y, Zhang C G, Zhao W C, et al.Suppression of hollow droplet rebound on super-repellent surfaces[J]. Nature Communications, 2023, 14: 5386. DOI: 10.1038/s41467-023-40941-3. [28] Gulyaev I P, Solonenko O P.Hollow droplets impacting onto a solid surface[J]. Experiments in Fluids, 2013, 54(1): 1432. DOI: 10.1007/s00348-012-1432-z. [29] Naidu D P, Dash S.Impact dynamics of air-in-liquid compound droplets[J]. Physics of Fluids, 2022, 34(7):073604. DOI: 10.1063/5.0096599. [30] Popinet S.A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations[J]. Journal of Computational Physics, 2015, 302: 336-358. DOI: 10.1016/j.jcp.2015.09.009. [31] Bell J B, Colella P, Glaz H M.A second-order projection method for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 1989, 85(2): 257-283. DOI: 10.1016/0021-9991(89)90151-4. [32] 吴曦, 孟旭, 游晨宇, 王增辉. 竖直磁场下液态金属液滴撞击固壁实验研究[J]. 中国科学院大学学报, 2024. DOI: 10.7523/j.ucas.2024.031. |