中国科学院大学学报 ›› 2024, Vol. 41 ›› Issue (1): 11-27.DOI: 10.7523/j.ucas.2022.061
罗中凯, 张立波
收稿日期:
2021-10-25
修回日期:
2022-06-10
发布日期:
2022-06-29
通讯作者:
张立波,E-mail:libo@iscas.ac.cn
基金资助:
LUO Zhongkai, ZHANG Libo
Received:
2021-10-25
Revised:
2022-06-10
Published:
2022-06-29
摘要: 旨在通过对学习路径规划研究现状的分析,为未来学习路径规划领域相关研究的发展提供借鉴。具体而言,首先介绍学习路径规划的定义以及学习路径规划方法中常用参数;然后按照使用算法的类别的不同,对学习路径规划算法进行详细分类,总结各类学习路径规划方法的优缺点;接着,对学习路径规划方法使用的数据集与评估方法进行介绍;最后,总结学习路径规划方法面临的挑战并对其未来发展趋势进行预测。
中图分类号:
罗中凯, 张立波. 学习路径规划方法[J]. 中国科学院大学学报, 2024, 41(1): 11-27.
LUO Zhongkai, ZHANG Libo. Learning path planning methods[J]. Journal of University of Chinese Academy of Sciences, 2024, 41(1): 11-27.
[1] 彭建伟. 基于 Memetic 算法的个性化学习路径推荐的研究与实现[D]. 长沙:湖南大学, 2009. [2] Durand G, Belacel N, LaPlante F. Graph theory based model for learning path recommendation[J]. Information Sciences, 2013, 251: 10-21. DOI:10.1016/j.ins.2013.04.017. [3] Chen C M. Intelligent web-based learning system with personalized learning path guidance[J]. Computers & Education, 2008, 51(2): 787-814. DOI:10.1016/j.compedu.2007.08.004. [4] Kardan A A, Aziz M, Shahpasand M. Adaptive systems: a content analysis on technical side for e-learning environments[J]. Artificial Intelligence Review, 2015, 44(3): 365-391. DOI:10.1007/s10462-015-9430-1. [5] Geden M, Emerson A, Rowe J, et al. Predictive student modeling in educational games with multi-task learning [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 654-661. DOI:10.1609/aaai.v34i01.5406. [6] Seki K, Matsui T, Okamoto T. An adaptive sequencing method of the learning objects for the E-learning environment[J]. Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 2005, 88(3): 54-71. DOI:10.1002/ecjc.20163. [7] Semet Y, Lutton E, Collet P. Ant colony optimisation for E-learning: observing the emergence of pedagogic suggestions[C]//Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03(Cat. No.03EX706). April 26-26, 2003, Indianapolis, IN, USA. IEEE, 2003: 46-52. DOI:10.1109/SIS.2003.1202246. [8] Yang Y J, Wu C N. An attribute-based ant colony system for adaptive learning object recommendation[J]. Expert Systems With Applications, 2009, 36(2): 3034-3047. DOI:10.1016/j.eswa.2008.01.066. [9] Wong L H, Looi C K. Adaptable learning pathway generation with ant colony optimization[J]. Journal of Educational Technology & Society, 2009, 12(3): 309-326. [10] Wang T I, Wang K T, Huang Y M. Using a style-based ant colony system for adaptive learning[J]. Expert Systems With Applications, 2008, 34(4): 2449-2464. DOI:10.1016/j.eswa.2007.04.014. [11] Kamsa I, Elouahbi R, El Khoukhi F, et al. Optimizing collaborative learning path by ant's optimization technique in E-learning system[C]//2016 15th International Conference on Information Technology Based Higher Education and Training (ITHET). September 8-10, 2016, Istanbul, Turkey. IEEE, 2016: 1-5. DOI:10.1109/ITHET.2016.7760697. [12] Rastegarmoghadam M, Ziarati K. Improved modeling of intelligent tutoring systems using ant colony optimization[J]. Education and Information Technologies, 2017, 22(3): 1067-1087. DOI:10.1007/s10639-016-9472-2. [13] 叶露.在线学习资源个性化推荐与学习路径规划研究[D].杭州: 浙江财经大学, 2018. [14] 赵琴,陈健,张月琴.基于逐次适应蚁群优化算法的个性化微学习推荐[J]. 计算机工程, 2018, 44(2): 238-243, 276. DOI:10.3969/j.issn.1000-3428.2018.02.041. [15] da Silva Lopes R, Fernandes M A. Adaptative instructional planning using workflow and genetic algorithms[C]//2009 Eighth IEEE/ACIS International Conference on Computer and Information Science. June 1-3, 2009, Shanghai, China. IEEE, 2009: 87-92. DOI:10.1109/ICIS.2009.197. [16] Romero C, De B P, Ventura S, et al. Using knowledge levels with AHA! for discovering interesting relationships[C]//Proceedings of the AACE ELearn'2002 Conference. Montreal: IEEE, 2002: 2721-2722. [17] Samia A, Mostafa B. Re-use of resources for adapted formation to the learner[C]//2007 International Symposium on Computational Intelligence and Intelligent Informatics. March 28-30, 2007, Agadir, Morocco. IEEE, 2007: 213-217. DOI:10.1109/ISCIII.2007.367391. [18] Huang M J, Huang H S, Chen M Y. Constructing a personalized E-learning system based on genetic algorithm and case-based reasoning approach[J]. Expert Systems With Applications, 2007, 33(3): 551-564. DOI:10.1016/j.eswa.2006.05.019. [19] Hovakimyan A, Sargsyan S, Barkhoudaryan S. Genetic algorithm and the problem of getting knowledge in E-learning systems[C]//IEEE International Conference on Advanced Learning Technologies, 2004. Proceedings. August 30-September 1, 2004, Joensuu, Finland. IEEE, 2004: 336-339. DOI:10.1109/ICALT.2004.1357431. [20] Wang T I, Tsai K H. Interactive and dynamic review course composition system utilizing contextual semantic expansion and discrete particle swarm optimization[J]. Expert Systems With Applications, 2009, 36(6): 9663-9673. DOI:10.1016/j.eswa.2008.12.010. [21] Chu C P, Chang Y C, Tsai C C. PC2PSO: personalized E-course composition based on particle swarm optimization[J]. Applied Intelligence, 2011, 34(1): 141-154. DOI:10.1007/s10489-009-0186-7. [22] DE MARCOS L, Barchino R, Martinez J J, et al. A new method for domain independent curriculum sequencing: a case study in a web engineering master program[J]. The International Journal of Engineering Education, 2009, 25(4): 763-771. [23] Sharma R, Banati H, Bedi P. Adaptive content sequencing for E-learning courses using ant colony optimization[C]//Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011, 2012: 579-590. DOI:10.1007/978-81-322-0491-6_53. [24] Kurilovas E, Zilinskiene I, Dagiene V. Recommending suitable learning scenarios according to learners' preferences: an improved swarm based approach[J]. Computers in Human Behavior, 2014, 30: 550-557. DOI:10.1016/j.chb.2013.06.036. [25] Yang F, Li F W B, Lau R W H. A fine-grained outcome-based learning path model[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44(2): 235-245. DOI:10.1109/TSMCC.2013.2263133. [26] Chen M Y, Tong M W, Liu C M, et al. Recommendation of learning path using an improved ACO based on novel coordinate system[C]//2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI). July 9-13, 2017, Hamamatsu, Japan. IEEE, 2017: 747-753. DOI:10.1109/IIAI-AAI.2017.90. [27] 贾思宇. 在线客服中基于扩展蚁群算法的学习路径推荐方法研究[D].上海:华东理工大学, 2014. [28] Kardan A A, Ale E M, Bahojb I M. A new personalized learning path generation method: ACO-map[J]. Indian Journal of Scientific Research, 2015, 5(1): 17-24. [29] Madhour H, Wentland Forte M. Personalized learning path delivery: models and example of application[M]//Intelligent Tutoring Systems. Berlin, Heidelberg: Springer Berlin Heidelberg,: 725-727. DOI:10.1007/978-3-540-69132-7_90. [30] Dwivedi P, Kant V, Bharadwaj K K. Learning path recommendation based on modified variable length genetic algorithm[J]. Education and Information Technologies, 2018, 23(2): 819-836. DOI:10.1007/s10639-017-9637-7. [31] 檀晓红.基于推荐及遗传算法的个性化课程生成与进化研究[D].上海:上海交通大学, 2013. DOI:CNKI: CDMD: 1.1014.008356. [32] 吕琳,韩永国.多Agent的个性化学习路径推荐系统设计[J].电脑知识与技术, 2013, 9(26): 5981-5984. [33] Salehi M, Pourzaferani M, Razavi S A. Hybrid attribute-based recommender system for learning material using genetic algorithm and a multidimensional information model[J]. Egyptian Informatics Journal, 2013, 14(1): 67-78. DOI:10.1016/j.eij.2012.12.001. [34] Wu Z Y, He T, Mao C J, et al. Exam paper generation based on performance prediction of student group[J]. Information Sciences, 2020, 532: 72-90. DOI:10.1016/j.ins.2020.04.043. [35] Lumbardh E, Krenare P N. Constructing a personalized learning path using genetic algorithms approach[EB/OL]. arXiv:2104.11276. (2021-04-22)[2022-04-22]. https://arxiv.org/abs/2104.11276. [36] Ballera M, Lukandu I A, Radwan A. Personalizing E-learning curriculum using: reversed roulette wheel selection algorithm[C]//2014 International Conference on Education Technologies and Computers (ICETC). September 22-24, 2014, Lodz, Poland. IEEE, 2014: 91-97. DOI:10.1109/ICETC.2014.6998908. [37] Gao Y, Peng L X, Li F F, et al. A multi-objective PSO with Pareto archive for personalized E-course composition in moodle learning system[C]//2015 8th International Symposium on Computational Intelligence and Design (ISCID). December 12-13, 2015, Hangzhou, China. IEEE, 2015: 21-24. DOI:10.1109/ISCID.2015.27. [38] 陈其晖,凌培亮,萧蕴诗.基于改进微粒群优化的学习路径优化控制方法[J].计算机工程, 2008, 34(4): 190-192, 195. DOI:10.3969/j.issn.1000-3428.2008.04.067. [39] 吴雷,方卿.基于改进粒子群算法的学习路径优化方法[J].系统科学与数学,2016,36(12): 2272-2281. [40] 李浩君,张鹏威,张征,等.基于多维信息特征映射模型的在线学习路径优化方法[J].控制与决策, 2019, 34(6): 1132-1140. DOI:10.13195/j.kzyjc.2017.1579. [41] Debbah A, Ben Ali Y M. Solving the curriculum sequencing problem with DNA computing approach[J]. International Journal of Distance Education Technologies, 2014, 12(4): 1-18. DOI:10.4018/ijdet.2014100101. [42] Hnida M, Idrissi M K, Bennani S. Adaptive teaching learning sequence based on instructional design and evolutionary computation[C]//2016 15th International Conference on Information Technology Based Higher Education and Training (ITHET). September 8-10, 2016, Istanbul, Turkey. IEEE, 2016: 1-6. DOI:10.1109/ITHET.2016.7760739. [43] Wan S S, Niu Z D. A learner oriented learning recommendation approach based on mixed concept mapping and immune algorithm[J]. Knowledge-Based Systems, 2016, 103: 28-40. DOI:10.1016/j.knosys.2016.03.022. [44] Gomez-Gonzalez M, Jurado F. Personalized E-learning using shuffled frog-leaping algorithm[C]//Proceedings of the 2012 IEEE Global Engineering Education Conference. April 17-20, 2012, Marrakech, Morocco. IEEE, 2012: 1-7. DOI:10.1109/EDUCON.2012.6201086. [45] Wan S S, Lyu C. Adaptive course generation based on evolutionary algorithm[C]//2014 4th IEEE International Conference on Information Science and Technology. April 26-28, 2014, Shenzhen, China. IEEE, 2014: 168-171. DOI:10.1109/ICIST.2014.6920357. [46] Tang T Y, McCalla G G. Data mining for contextual educational recommendation and evaluation strategies[M]//Handbook of Educational Data Mining. CRC Press, 2010: 279-294. DOI:10.1201/b10274-25. [47] Godoy D, Amandi A. Link recommendation in E-learning systems based on content-based student profiles[M]//Handbook of Educational Data Mining. CRC Press, 2010: 295-308. DOI:10.1201/b10274-26. [48] Su C. Designing and developing a novel hybrid adaptive learning path recommendation system (ALPRS) for gamification mathematics geometry course[J]. EURASIA Journal of Mathematics, Science and Technology Education, 2017, 13(6): 2275-2298. DOI:10.12973/eurasia.2017.01225a. [49] Chen Y X, Li X O, Liu J C, et al. Recommendation system for adaptive learning[J]. Applied Psychological Measurement, 2018, 42(1): 24-41. DOI:10.1177/0146621617697959. [50] Bendahmane M, Falaki B E, Benattou M. Individualized learning path through a services-oriented approach[C]//Europe and MENA Cooperation Advances in Information and Communication Technologies, 2017: 95-102. DOI:10.1007/978-3-319-46568-5_10. [51] Klašnja-Milićević A, Vesin B, Ivanović M, et al. E-Learning personalization based on hybrid recommendation strategy and learning style identification[J]. Computers & Education, 2011, 56(3): 885-899. DOI:10.1016/j.compedu.2010.11.001. [52] Hsieh T C, Wang T I. A mining-based approach on discovering courses pattern for constructing suitable learning path[J]. Expert Systems With Applications, 2010, 37(6): 4156-4167. DOI:10.1016/j.eswa.2009.11.007. [53] Hsu M H. A personalized English learning recommender system for ESL students[J]. Expert Systems With Applications, 2008, 34(1): 683-688. DOI:10.1016/j.eswa.2006.10.004. [54] Chen M, Hsu S H, Li Y L, et al. Personalized intelligent M-learning system for supporting effective English learning[C]//2006 IEEE International Conference on Systems, Man and Cybernetics. October 8-11, 2006, Taipei, Taiwan, China. IEEE, 2006: 4898-4903. DOI:10.1109/ICSMC.2006.385081. [55] Feng X Z, Peng Y, Xie H R, et al. Role-based learning path discovery for collaborative business environment[C]//2011 International Conference on Control, Automation and Systems Engineering (CASE). July 30-31, 2011, Singapore. IEEE, 2011: 1-4. DOI:10.1109/ICCASE.2011.5997835. [56] Feng X Z, Xie H R, Peng Y, et al. Groupized learning path discovery based on member profile[C]//New Horizons in Web-Based Learning-ICWL 2010 Workshops, 2011: 301-310. DOI:10.1007/978-3-642-20539-2_32. [57] Liu Z Y, Dong L Y, Wu C L. Research on personalized recommendations for students’ learning paths based on big data[J]. International Journal of Emerging Technologies in Learning (IJET), 2020, 15(8): 40. DOI:10.3991/ijet.v15i08.12245. [58] Ge L, Kong W N, Luo J Z. Courseware recommendation in E-learning system[C]//Advances in Web Based Learning-ICWL 2006, 2006: 10-24. DOI:10.1007/11925293_2. [59] Salehi M, Nakhai Kamalabadi I, Ghaznavi Ghoushchi M B. Personalized recommendation of learning material using sequential pattern mining and attribute based collaborative filtering[J]. Education and Information Technologies, 2014, 19(4): 713-735. DOI:10.1007/s10639-012-9245-5. [60] Fu Y C, Liu Q, Cui Z M. A collaborative recommend algorithm based on bipartite community[J]. The Scientific World Journal, 2014, 2014: 295931. DOI:10.1155/2014/295931. [61] Al-Hassan M, Lu H Y, Lu J. A semantic enhanced hybrid recommendation approach: a case study of E-government tourism service recommendation system[J]. Decision Support Systems, 2015, 72: 97-109. DOI:10.1016/j.dss.2015.02.001. [62] Xu D H, Wang Z J, Chen K J, et al. Personalized learning path recommender based on user profile using social tags[C]//2012 Fifth International Symposium on Computational Intelligence and Design. October 28-29, 2012, Hangzhou, China. IEEE, 2012: 511-514. DOI:10.1109/ISCID.2012.133. [63] Xie H R, Zou D, Wang F, et al. Discover learning path for group users: a profile-based approach[J]. Neurocomputing, 2017, 254: 59-70. DOI:10.1016/j.neucom.2016.08.133. [64] Li X, Li X, Tang J T, et al. Improving deep item-based collaborative filtering with Bayesian personalized ranking for MOOC course recommendation[C]//Knowledge Science, Engineering and Management, 2020: 247-258. DOI:10.1007/978-3-030-55130-8_22. [65] Tam V, Lam E Y, Fung S T. A new framework of concept clustering and learning path optimization to develop the next-generation E-learning systems[J]. Journal of Computers in Education, 2014, 1(4): 335-352. DOI:10.1007/s40692-014-0016-8. [66] 陈其晖,凌培亮,萧蕴诗.基于Petri网的知识空间建模方法与学习路径控制[J].计算机工程与应用, 2007, 43(12): 10-12, 88. DOI:10.3321/j.issn: 1002-8331.2007.12.004. [67] Liang C, Ye J, Wu Z, et al. Recovering concept prerequisite relations from university course dependencies[C]//Thirty-First AAAI Conference on Artificial Intelligence.2017, San Francisco, California, USA. AAAI Press, 2017: 4786-4791. [68] Pan L M, Li C J, Li J Z, et al. Prerequisite relation learning for concepts in MOOCs[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada. Stroudsburg, PA, USA: Association for Computational Linguistics, 2017: 1447-1456. DOI:10.18653/v1/p17-1133. [69] Pan L, Wang X, Li C, et al. Course concept extraction in moocs via embedding-based graph propagation[C]//Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Taipei, Taiwan, China. IJCNLP, 2017: 875-884. [70] Liu H X, Ma W L, Yang Y M, et al. Learning concept graphs from online educational data[J]. Journal of Artificial Intelligence Research, 2016, 55: 1059-1090. DOI:10.1613/jair.5002. [71] Chu K K, Lee C I, Tsai R S. Ontology technology to assist learners’ navigation in the concept map learning system[J]. Expert Systems With Applications, 2011, 38(9): 11293-11299. DOI:10.1016/j.eswa.2011.02.178. [72] Leung E W C, Li Q. A dynamic conceptual network mechanism for personalized study plan generation[C]//Advances in Web-Based Learning-ICWL 2003, 2003: 69-80. DOI:10.1007/978-3-540-45200-3_8. [73] Hung C L, Hung Y W. A practical approach for constructing an adaptive tutoring model based on concept map[C]//2009 IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems. May 11-13, 2009, Hong Kong, China. IEEE, 2009: 298-303. DOI:10.1109/VECIMS.2009.5068912. [74] Steiner C M, Albert D. Personalising learning through prerequisite structures derived from concept maps[C]//Advances in Web Based Learning-ICWL 2007, 2008: 43-54. DOI:10.1007/978-3-540-78139-4_5. [75] Shi D Q, Wang T, Xing H, et al. A learning path recommendation model based on a multidimensional knowledge graph framework for E-learning[J]. Knowledge-Based Systems, 2020, 195: 105618. DOI:10.1016/j.knosys.2020.105618. [76] Shmelev V, Karpova M, Dukhanov A. An approach of learning path sequencing based on revised bloom’s taxonomy and domain ontologies with the use of genetic algorithms[J]. Procedia Computer Science, 2015, 66: 711-719. DOI:10.1016/j.procs.2015.11.081. [77] Snae C, Brückner M. Ontology-driven E-learning system based on roles and activities for Thai learning environment[J]. Interdisciplinary Journal of e-Skills and Lifelong Learning, 2007, 3: 1-17. DOI:10.28945/382. [78] Balik M, Jelinek I. Improving the adaptive systems using ontologies and semantic web technologies[C]//2007 Innovations in Information Technologies (IIT). November 18-20, 2007, Dubai, United Arab Emirates. IEEE, 2007: 738-740. DOI:10.1109/IIT.2007.4430513. [79] Wang T I, Tsai K H, Lee M C, et al. Personalized learning objects recommendation based on the semantic-aware discovery and the learner preference pattern[J]. Journal of Educational Technology & Society, 2007, 10(3): 84-105. [80] Min W X, Wei C, Lei C. Research of ontology-based adaptive learning system[C]//2008 International Symposium on Computational Intelligence and Design. October 17-18, 2008, Wuhan, China. IEEE, 2008: 366-370. DOI:10.1109/ISCID.2008.109. [81] Pandit V R. E-learning system based on semantic web[C]//2010 3rd International Conference on Emerging Trends in Engineering and Technology. November 19-21, 2010, Goa, India. IEEE, 2010: 559-564. DOI:10.1109/ICETET.2010.17. [82] Ouf S, Abd Ellatif M, Salama S E, et al. A proposed paradigm for smart learning environment based on semantic web[J]. Computers in Human Behavior, 2017, 72: 796-818. DOI:10.1016/j.chb.2016.08.030. [83] Wei C Y, Fang Z Y, Zhang Y C, et al. A personalized CAI courseware system[C]//2009 International Conference on Computational Intelligence and Software Engineering. December 11-13, 2009, Wuhan, China. IEEE, 2009: 1-4. DOI:10.1109/CISE.2009.5365527. [84] 刘萌,阎高伟,续欣莹.基于知识点网络的自动化专业学习路径推荐[J].计算机仿真, 2016, 33(6): 180-184. DOI:10.3969/j.issn.1006-9348.2016.06.039. [85] Zhu H P, Tian F, Wu K, et al. A multi-constraint learning path recommendation algorithm based on knowledge map[J]. Knowledge-Based Systems, 2018, 143: 102-114. DOI:10.1016/j.knosys.2017.12.011. [86] Zou D, Xie H, Wang F L. Future trends and research issues of technology-enhanced language learning: a technological perspective[J]. Knowledge Management & E-Learning: an International Journal, 2018: 426-440. DOI:10.34105/j.kmel.2018.10.026. [87] Hussain M, Zhu W H, Zhang W, et al. Using machine learning to predict student difficulties from learning session data[J]. Artificial Intelligence Review, 2019, 52(1): 381-407. DOI:10.1007/s10462-018-9620-8. [88] Saito T, Watanobe Y. Learning path recommendation system for programming education based on neural networks[J]. International Journal of Distance Education Technologies, 2020, 18(1): 36-64. DOI:10.4018/ijdet.2020010103. [89] Wang J J, Xie H R, Au O T S, et al. Attention-based CNN for personalized course recommendations for MOOC learners[C]//2020 International Symposium on Educational Technology (ISET). August 24-27, 2020, Bangkok, Thailand. IEEE, 2020: 180-184. DOI:10.1109/ISET49818.2020.00047. [90] Wang J J, Xie H R, Wang F, et al. Top-N personalized recommendation with graph neural networks in MOOCs[J]. Computers and Education: Artificial Intelligence, 2021, 2: 100010. DOI:10.1016/j.caeai.2021.100010. [91] Kwasnicka H, Szul D, Markowska-Kaczmar U, et al. Learning assistant-personalizing learning paths in E-learning environments[C]//2008 7th Computer Information Systems and Industrial Management Applications. June 26-28, 2008, Ostrava, Czech Republic. IEEE, 2008: 308-314. DOI:10.1109/CISIM.2008.51. [92] Zhang M, Liu S X, Wang Y F. STR-SA: session-based thread recommendation for online course forum with self-attention[C]//2020 IEEE Global Engineering Education Conference. April 27-30, 2020, Porto, Portugal. IEEE, 2020: 374-381. DOI:10.1109/EDUCON45650.2020.9125245. [93] Wu Z Y, Li M, Tang Y, et al. Exercise recommendation based on knowledge concept prediction[J]. Knowledge-Based Systems, 2020, 210: 106481. DOI:10.1016/j.knosys.2020.106481. [94] Antony Rosewelt L, Arokia Renjit J. A content recommendation system for effective E-learning using embedded feature selection and fuzzy DT based CNN[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(1): 795-808. DOI:10.3233/jifs-191721. [95] Choi Y, Na Y, Yoon Y, et al. Choose your own question: encouraging self-personalization in learning path construction[EB/OL]. arXiv:2005.03818.(2020-05-08)[2022-042-2]. https://doi.org/10.48550/arXiv.2005.03818. [96] Li X, Xu H C, Zhang J M, et al. Optimal hierarchical learning path design with reinforcement learning[J]. Applied Psychological Measurement, 2021, 45(1): 54-70. DOI:10.1177/0146621620947171. [97] El Fazazi H, Elgarej M, Qbadou M, et al. Design of an adaptive E-learning system based on multi-agent approach and reinforcement learning[J]. Engineering, Technology & Applied Science Research, 2021, 11(1): 6637-6644. DOI:10.48084/etasr.3905. [98] 周莹莹. 基于知识图谱的学习路径推荐策略研究[D]. 南昌:江西财经大学,2020. [99] Menai M E B, Alhunitah H, Al-Salman H. Swarm intelligence to solve the curriculum sequencing problem[J]. Computer Applications in Engineering Education, 2018, 26(5): 1393-1404. DOI:10.1002/cae.22046. [100] Agarwal S, Goyal M, Kumar A, et al. Intuitionistic fuzzy ant colony optimization for course sequencing in E-learning[C]//2016 Ninth International Conference on Contemporary Computing (IC3). August 11-13, 2016, Noida, India. IEEE, 2016: 1-6. DOI:10.1109/IC3.2016.7880248. [101] Govindarajan K, Kumar V S, Kinshuk. Dynamic learning path prediction: a learning analytics solution[C]//2016 IEEE Eighth International Conference on Technology for Education (T4E). December 2-4, 2016, Mumbai, India. IEEE, 2016: 188-193. DOI:10.1109/T4E.2016.047. [102] Nabizadeh A H, Mário Jorge A, Paulo Leal J. RUTICO: recommending successful learning paths under time constraints[C]//Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization. Bratislava Slovakia. New York, NY, USA: ACM, 2017: 10.1145/3099023.3099035. DOI:10.1145/3099023.3099035. [103] Nabizadeh A H, Gonçalves D, Gama S, et al. Adaptive learning path recommender approach using auxiliary learning objects[J]. Computers & Education, 2020, 147: 103777. DOI:10.1016/j.compedu.2019.103777. [104] Li J W, Chang Y C, Chu C P, et al. A self-adjusting E-course generation process for personalized learning[J]. Expert Systems With Applications, 2012, 39(3): 3223-3232. DOI:10.1016/j.eswa.2011.09.009. [105] Garrido A, Morales L, Serina I. Using AI planning to enhance E-learning processes[C]//Proceedings of the International Conference on Automated Planning and Scheduling. Atibaia: IEEE, 2012: 47-55. [106] Saito T, Watanobe Y. Learning path recommender system based on recurrent neural network[C]//2018 9th International Conference on Awareness Science and Technology (iCAST). September 19-21, 2018, Fukuoka, Japan. IEEE, 2018: 324-329. DOI:10.1109/ICAwST.2018.8517231. [107] Yang T C, Hwang G J, Yang S J H. Development of an adaptive learning system with multiple perspectives based on students' learning styles and cognitive styles[J]. Journal of Educational Technology & Society, 2013, 16(4): 185-200. [108] Colace F, De Santo M, Greco L. E-learning and personalized learning path: a proposal based on the adaptive educational hypermedia system[J]. International Journal of Emerging Technologies in Learning (IJET), 2014, 9(2): 9. DOI:10.3991/ijet.v9i2.3211. [109] Essalmi F, Ayed L J B, Jemni M, et al. A fully personalization strategy of E-learning scenarios[J]. Computers in Human Behavior, 2010, 26(4): 581-591. DOI:10.1016/j.chb.2009.12.010. |
[1] | 李元, 张栖, 朱建明, 焦建彬. 基于多层次深度模型的社交网络核心谣言传播节点识别[J]. 中国科学院大学学报, 2024, 41(1): 136-144. |
[2] | 董文豪, 张怀. 基于迁移学习的岩屑岩性识别[J]. 中国科学院大学学报, 2023, 40(6): 743-750. |
[3] | 张萌, 潘志刚. 基于分层模糊聚类和小波卷积神经网络的SAR图像变化检测算法[J]. 中国科学院大学学报, 2023, 40(5): 637-646. |
[4] | 刘子健, 姜泉江, 刘会杰. 基于神经网络的低轨卫星多波束系统峰均比自适应限幅法[J]. 中国科学院大学学报, 2023, 40(5): 670-676. |
[5] | 连会强, 刘兵, 李朋远, 于华. 销量约束下基于切片递归神经网络模型的成品油价格推荐算法[J]. 中国科学院大学学报, 2023, 40(4): 566-576. |
[6] | 姚沐风, 昝露洋, 李柏鹏, 李庆亭, 陈正超. 基于CAR-Siamese网络的高分辨率遥感图像建筑物变化检测[J]. 中国科学院大学学报, 2023, 40(3): 380-387. |
[7] | 庄子俊, 袁晓兵, 裴俊, 王国辉, 刘建坡. 基于无监督表达学习的森林地貌特征建模及林火易发性评估[J]. 中国科学院大学学报, 2023, 40(2): 227-239. |
[8] | 霍鑫怡, 李焱磊, 陈龙永, 张福博, 孙巍. 基于卷积注意力和胶囊网络的 SAR少样本目标识别方法[J]. 中国科学院大学学报, 2022, 39(6): 783-792. |
[9] | 王树立, 唐海蓉, 计璐艳. 勺型网络:用于Landsat遥感图像云检测的新型网络[J]. 中国科学院大学学报, 2022, 39(5): 712-720. |
[10] | 曹哲, 冯珊珊, 孙显, 洪文. 基于图像分割和EM算法的PolSAR地物分类方法[J]. 中国科学院大学学报, 2022, 39(5): 639-647. |
[11] | 程术, 石耀霖, 张怀. 基于神经网络预测太阳黑子变化[J]. 中国科学院大学学报, 2022, 39(5): 615-626. |
[12] | 孙文军, 马广彬, 田妙苗, 林友明, 黄鹏. 基于LSTM和启发式方法的遥感卫星地面站天线智能调度[J]. 中国科学院大学学报, 2022, 39(4): 532-542. |
[13] | 古煜民, 阎福礼. 基于不同骨架UNet++网络的建筑物提取[J]. 中国科学院大学学报, 2022, 39(4): 512-523. |
[14] | 马莹莹, 吴幼龙, 唐华. 基于特征编码和图嵌入的姓名消歧方法[J]. 中国科学院大学学报, 2022, 39(3): 360-368. |
[15] | 邓紫薇, 邵芸, 王国军, 黄富祥, 杨佳琦. 自由式滑雪空中技巧赛道风速风向超短期预测与分析[J]. 中国科学院大学学报, 2022, 39(3): 332-342. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||