欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

利用神经网络学习习一一类随机Lotka-Volterra系统的参数

汪展鹏, 王丽瑾   

  1. 中国科学院大学数学科学学院, 北京 100049
  • 收稿日期:2022-11-02 修回日期:2023-02-17 发布日期:2023-03-21

Learning Parameters of a Class of Stochastic Lotka-Volterra Systems with Neural Networks*

WANG Zhanpeng, WANG Lijin   

  1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-11-02 Revised:2023-02-17 Published:2023-03-21
  • Contact: E-mail: ljwang@ucas.ac.cn
  • Supported by:
    *National Natural Science Foundation of China (No.11971458, No. 11471310)

摘要: 本文中,我们提出一种利用神经网络来学习一类随机Lotka-Volterra系统参数的方法。我们利用随机微分方程的Euler-Maruyama离散来近似推导出观测变量的期望和协方差矩阵,并在此基础上建立损失函数。在训练网络中我们使用了随机梯度下降方法。数值实验展示了我们算法的有效性。

关键词: 随机Lotka-Volterra系统, 神经网络, Euler-Maruyama格式, 参数估计

Abstract: In this paper, we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems. Approximations of the mean and covariance matrix of the observational variable are obtained from the Euler-Maruyama discretization of the underlying SDE, based on which the loss function is built. Stochastic gradient decent method is applied in the neural network training. Numerical experiments demonstrate the effectiveness of our method.

Key words: stochastic Lotka-Volterra systems, neural networks, Euler-Maruyama scheme, parameter estimation

中图分类号: