欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

旋转系统中穿透Rayleigh-Bénard对流的数值模拟研究*

王崧, 曹玉会   

  1. 中国科学院大学工程科学学院,北京 100049
  • 收稿日期:2024-03-07 修回日期:2024-04-03 发布日期:2024-05-09
  • 通讯作者: † E-mail: yhcao@ucas.edu.cn
  • 基金资助:
    * 国家自然科学基金(52176025)资助

Numerical simulation for penetrative Rayleigh-Bénard convection in a rotating system

WANG Song, CAO Yuhui   

  1. College of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-03-07 Revised:2024-04-03 Published:2024-05-09

摘要: 旋转穿透对流在地球科学和工程领域受到广泛关注,由于水在4℃附近具有密度倒置特性,因此本文以冷水作为工质研究竖直圆筒内的旋转穿透Rayleigh-Bénard对流(Rayleigh-Bénard convection,RBC)。本文对不同参数条件下(密度倒置参数${{\theta }_{m}}=0.0,0.5$,罗斯比数的倒数$0\le 1/Ro\le 10$,瑞利数${{10}^{4}}\le Ra\le {{10}^{8}}$.)的冷水对流传热开展了直接数值模拟研究。结果表明,当$1/Ro=0$时,${{\theta }_{m}}=0.5$的穿透对流呈现上下非对称性,上热边界层厚度$\delta _{\text{top}}^{\theta }$大于下热边界层厚度$\delta _{\text{top}}^{\theta }$,努塞尔数$Nu$和${{\delta }^{\theta }}$与$Ra$的标度指数约为$\pm 0.3$;在中等$1/Ro$条件下,${{\theta }_{m}}=0.0$的冷、热羽流均能够形成涡柱结构;而${{\theta }_{m}}=0.5$的流动因受冷水密度倒置特性影响,仅热羽流能够形成涡柱,冷流体仍保持羽流形态,因此,涡柱的形成对于${{\theta }_{m}}=0.5$的对流传热增强效果并不显著。旋转穿透RBC的热边界层厚度在中高$1/Ro$时满足$1/R{{o}^{1/2}}$标度律,而此时的速度边界层厚度仍遵循$1/R{{o}^{-1/2}}$标度律。

关键词: 密度倒置, 穿透Rayleigh-Bénard对流, 旋转系统, 数值模拟

Abstract: The rotating penetrative convection in the fields of Earth science and engineering has attracted extensive attention. Due to the density inversion property of water near 4°C, cold water is used as the working fluid in the present paper to study the rotating penetrative Rayleigh-Bénard convection in a vertical annulus. Direct numerical simulation is performed to analyze the convective heat transfer of cold water under various parameter conditions, with the density inversion parameter ${{\theta }_{m}}=0.0,0.5$, the inverse Rossby number $1/Ro$ and the Rayleigh number $Ra$ changing in the ranges $0\le 1/Ro\le 10$ and ${{10}^{4}}\le Ra\le {{10}^{8}}$. The present results show that in the non-rotating cases (i.e. $1/Ro=0$), the penetrative convection of cold water with ${{\theta }_{m}}=0.5$ exhibits significant up-down asymmetry, with the top thermal boundary layer thickness $\delta _{\text{top}}^{\theta }$ greater than the bottom one $\delta _{\text{bottom}}^{\theta }$. The scaling exponents of the Nusselt number $Nu$ and ${{\delta }^{\theta }}$ versus $Ra$ are approximately $\pm 0.3$. In the rotating cases (i.e. $1/Ro>0$), the flow changes with increasing the rotation rate (i.e.$1/Ro$), leading to the transition of flow regime from thermal plumes to vortex columns at moderate $1/Ro$. Particularly noteworthy is that for ${{\theta }_{m}}=0.0$ both the cold and hot plumes are strong enough to form vortex columns in a certain range of $1/Ro$, while the density inversion property at ${{\theta }_{m}}=0.5$ renders the cold plumes weak so that only hot plumes can be converted into vortex columns. As a result, the augmentation of heat transfer, induced by the formation of vortex columns, for ${{\theta }_{m}}=0.5$ is not as significant as that for ${{\theta }_{m}}=0.0$. For the rotating penetrative convection of cold water with ${{\theta }_{m}}=0.5$, at moderate to high $1/Ro$, the thermal boundary layer thickness ${{\delta }^{\theta }}$ exhibits a scaling law ${{\delta }^{\theta }}\tilde{\ }1/R{{o}^{1/2}}$, while the velocity boundary layer thickness ${{\delta }^{u}}$ still follows ${{\delta }^{u}}\tilde{\ }1/R{{o}^{-1/2}}$.

Key words: Density inversion, Penetrative Rayleigh-Bénard convection, Rotating system, Numerical simulation

中图分类号: