[1] He K M, Chang H W, Sun J.Rectangling panoramic images via warping[J]. ACM Transactions on Graphics, 2013, 32(4):79. DOI: 10.1145/2461912.2462004. [2] Li D P, He K M, Sun J, et al.A geodesic-preserving method for image warping[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA. IEEE, 2015:213-221.DOI: 10.1109/CVPR.2015.7298617. [3] Zhang Y, Lai Y K, Zhang F L.Content-preserving image stitching with piecewise rectangular boundary constraints[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(7): 3198-3212. DOI: 10.1109/TVCG.2020.2965097. [4] Nie L, Lin C Y, Liao K, et al.Deep rectangling for image stitching: A learning baseline[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA. IEEE, 2022: 5730-5738. DOI: 10.1109/CVPR52688.2022.00565. [5] Kwatra V, Schödl A, Essa I, et al.Graphcut textures: Image and video synthesis using graph cuts[J]. ACM Transactions on Graphics, 2003, 22(3): 277-286. DOI: 10.1145/882262.882264. [6] Eden A, Uyttendaele M, Szeliski R.Seamless image stitching of scenes with large motions and exposure differences[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). New York, NY, USA. IEEE, 2006: 2498-2505. DOI: 10.1109/CVPR.2006.268. [7] Li N, Liao T L, Wang C.Perception-based seam cutting for image stitching[J]. Signal, Image and Video Processing, 2018, 12(5): 967-974. DOI: 10.1007/s11760-018-1241-9. [8] Gao J, Li Y, Chin T J,et al.Seam-Driven Image Stitching[C]//Eurographics 2013.2013.DOI:10.2312/CONF/EG2013/SHORT/045-048. [9] Zhang F, Liu F.Parallax-tolerant image stitching[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. IEEE, 2014: 3262-3269. DOI: 10.1109/CVPR.2014.423. [10] Lin K M, Jiang N J, Cheong L F, et al. SEAGULL: seam-guided local alignment for parallax-tolerant image stitching[C]//European Conference on Computer Vision. Cham: Springer, 2016: 370-385.10.1007/978-3-319-46487-9_23. [11] Dai Q Y, Fang F M, Li J C, et al.Edge-guided composition network for image stitching[J]. Pattern Recognition, 2021, 118: 108019. DOI: 10.1016/j.patcog.2021.108019. [12] Nie L, Lin C Y, Liao K, et al.Parallax-tolerant unsupervised deep image stitching[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV). Paris, France. IEEE, 2023: 7365-7374. DOI: 10.1109/ICCV51070.2023.00680. [13] Sohl-Dickstein J, Weiss E A, Maheswaranathan N, et al.Deep unsupervised learning using nonequilibrium thermodynamics[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37. July 6 - 11, 2015, Lille, France. ACM, 2015: 2256-2265. DOI: 10.5555/3045118.3045358. [14] Ho J, Jain A, Abbeel P.Denoising diffusion probabilistic models[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. December 6 - 12, 2020,Vancouver, BC, Canada. ACM, 2020: 6840-6851. DOI: 10.5555/3495724.3496298. [15] Nichol A, Dhariwal P. Improved denoising diffusion probabilistic models[EB/OL]. arXiv:2102.09672. (2021-02-18)[2024-05-20]. DOI: 10.48550/arXiv.2102.09672. [16] Zhu Y Z, Zhang K, Liang J Y, et al.Denoising diffusion models for plug-and-play image restoration[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Vancouver, BC, Canada. IEEE, 2023: 1219-1229. DOI: 10.1109/CVPRW59228.2023.00129. [17] Lugmayr A, Danelljan M, Romero A, et al.RePaint: Inpainting using denoising diffusion probabilistic models[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA. IEEE, 2022: 11451-11461. DOI: 10.1109/CVPR52688.2022.01117. [18] Chung H, Sim B, Ryu D, et al.Improving diffusion models for inverse problems using manifold constraints[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. 28 November 2022, New Orleans, LA, USA. ACM, 2022: 25683-25696. DOI: 10.5555/3600270.3602132. [19] Dhariwal P, Nichol A. Diffusion models beat GANs on image synthesis[EB/OL]. 2021: 2105.05233.http://arxiv.org/abs/2105.05233v4. [20] Lowe D G.Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece. IEEE, 1999: 1150-1157. DOI: 10.1109/ICCV.1999.790410. [21] Fischler M A, Bolles R C.Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[M]//Readings in Computer Vision. Amsterdam: Elsevier, 1987: 726-740. DOI: 10.1016/b978-0-08-051581-6.50070-2. [22] Chen Y B, Liu S F, Wang X L.Learning continuous image representation with local implicit image function[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021: 8624-8634. DOI: 10.1109/CVPR46437.2021.00852. [23] Lim B, Son S, Kim H, et al.Enhanced deep residual networks for single image super-resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, HI, USA. IEEE, 2017: 1132-1140. DOI: 10.1109/CVPRW.2017.151. [24] Ke J J, Wang Q F, Wang Y L, et al.MUSIQ: Multi-scale image quality transformer[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada. IEEE, 2021: 5128-5137. DOI: 10.1109/ICCV48922.2021.00510. [25] Ying Z Q, Niu H R, Gupta P, et al.From patches to pictures (PaQ-2-PiQ): Mapping the perceptual space of picture quality[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA. IEEE, 2020: 3572-3582. DOI: 10.1109/CVPR42600.2020.00363. [26] Jia Q, Li Z J, Fan X, et al.Leveraging line-point consistence to preserve structures for wide parallax image stitching[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021: 12181-12190. DOI: 10.1109/CVPR46437.2021.01201. [27] Liao T L, Li N.Single-perspective warps in natural image stitching[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2019. DOI: 10.1109/TIP.2019.2934344. [28] Lin C C, Pankanti S U, Ramamurthy K N, et al.Adaptive as-natural-as-possible image stitching[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA. IEEE, 2015: 1155-1163. DOI: 10.1109/CVPR.2015.7298719. [29] Zaragoza J, Chin T J, Brown M S, et al.As-projective-As-possible image stitching with moving DLT[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA. IEEE, 2013: 2339-2346. DOI: 10.1109/CVPR.2013.303. |