[1] Usman M, Siddiqui N A, Zhang S Q, et al.3D geo-cellular static virtual outcrop model and its implications for reservoir petro-physical characteristics and heterogeneities[J]. Petroleum Science, 2021, 18(5): 1357-1369. DOI: 10.1016/j. petsci.2021.09.021. [2] Healy D, Rizzo R E, Cornwell D G, et al.FracPaQ: A MATLAB™ toolbox for the quantification of fracture patterns[J]. Journal of Structural Geology, 2017, 95: 1-16. DOI: 10.1016/j.jsg.2016.12.003. [3] Thiele S T, Lorenz S, Kirsch M, et al.Multi-scale, multi-sensor data integration for automated 3-D geological mapping[J]. Ore Geology Reviews, 2021, 136: 104252. DOI: 10.1016/j.oregeorev.2021.104252. [4] Panara Y, Chandra V, Finkbeiner T, et al.Fracture intensity and associated variability: A new methodology for 3D digital outcrop model analysis of carbonate reservoirs[J]. Marine and Petroleum Geology, 2023, 158: 106532.DOI: 10.1016/j.marpetgeo.2023.106532. [5] Pereira J V F, Medeiros W E, Dantas R R S, et al. An integrated 3D digital model of stratigraphy, petrophysics and karstified fracture network for the Cristal Cave, NE-Brazil[J]. Journal of Structural Geology, 2024, 178: 105013. DOI: 10.1016/j.jsg.2023.105013. [6] Betlem P, Birchall T, Lord G, et al.High-resolution digital outcrop model of the faults, fractures, and stratigraphy of the Agardhfjellet Formation cap rock shales at Konusdalen West, central Spitsbergen[J]. Earth System Science Data, 2024, 16(2): 985-1006. DOI: 10.5194/essd-16-985-2024. [7] Colica E, D’Amico S, Iannucci R, et al. Using unmanned aerial vehicle photogrammetry for digital geological surveys: Case study of Selmun promontory, northern of Malta[J]. Environmental Earth Sciences, 2021, 80(17): 551. DOI: 10.1007/s12665-021-09846-6. [8] Corradetti A, Tavani S, Parente M, et al.Distribution and arrest of vertical through-going joints in a seismic-scale carbonate platform exposure (Sorrento peninsula, Italy): Insights from integrating field survey and digital outcrop model[J]. Journal of Structural Geology, 2018, 108: 121-136. DOI: 10.1016/j.jsg.2017.09.009. [9] Martinelli M, Bistacchi A, Mittempergher S, et al.Damage zone characterization combining scan-line and scan-area analysis on a km-scale Digital Outcrop Model: The Qala Fault (Gozo)[J]. Journal of Structural Geology, 2020, 140: 104144. DOI: 10.1016/j.jsg.2020. 104144. [10] 乔占峰, 沈安江, 郑剑锋, 等. 基于数字露头模型的碳酸盐岩储集层三维地质建模[J]. 石油勘探与开发, 2015, 42(03): 328-337. DOI: 10.11698/PED.2015.03. 09. [11] 程雨柯, 李亚虎, 夏金梧, 等. 无人机技术在超高陡边坡危岩体半自动识别中的应用[J]. 中国地质灾害与防治学报, 2024, 35(01): 143-154. DOI: 10.16031/j.cnki.issn.1003-8035.202310028. [12] Menegoni N, Cipriani A, Scarani R, et al.The Cala Viola-Torre del Porticciolo coastal area: A key tectono-stratigraphic site to unravel the polyphase tectonics in NW Sardinia[J]. Italian Journal of Geosciences, 2024, 143(1): 75-104. DOI: 10.3301/IJG. 2024.05. [13] Chesley J T, Leier A L, White S, et al.Using unmanned aerial vehicles and structure-from-motion photogrammetry to characterize sedimentary outcrops: An example from the Morrison Formation, Utah, USA[J]. Sedimentary Geology, 2017, 354: 1-8. DOI: 10.1016/j.sedgeo.2017.03.013. [14] Tavani S, Corradetti A, Rizzo R E, et al.Best practices towards the digitization of 3D traces from virtual outcrop models[J]. Journal of Structural Geology, 2024, 186: 105222. DOI: 10.1016/j.jsg.2024. 105222. [15] Hartwig M E, Santos G G S. Enhanced discontinuity mapping of rock slopes exhibiting distinct structural frameworks using digital photogrammetry and UAV imagery[J]. Environmental Earth Sciences, 2024, 83(22): 624. DOI: 10.1007/s12665-024-11939-x. [16] Manna L, Perozzo M, Menegoni N, et al.Anatomy of a km-scale fault zone controlling the Oligo-Miocene bending of the Ligurian Alps (NW Italy): integration of field and 3D high-resolution digital outcrop model data[J]. Swiss Journal of Geosciences, 2023, 116(1): 15. DOI: 10.1186/s00015-023-00444-1. [17] Triantafyllou A, Watlet A, Le Mouélic S, et al.3-D digital outcrop model for analysis of brittle deformation and lithological mapping (Lorette cave, Belgium)[J]. Journal of Structural Geology, 2019, 120: 55-66. DOI: 10.1016/j.jsg.2019.01.001. [18] Nesbit P R, Durkin P R, Hugenholtz C H, et al.3-D stratigraphic mapping using a digital outcrop model derived from UAV images and structure-from-motion photogrammetry[J]. Geosphere, 2018, 14(6): 2469-2486. DOI: 10.1130/GES01688.1. [19] Conforti M, Mercuri M, Borrelli L.Morphological changes detection of a large earthflow using archived images, LiDAR-derived DTM, and UAV-based remote sensing[J]. Remote Sensing, 2021, 13(1): 120. DOI: 10.3390/rs13010120. [20] Menegoni N, Giordan D, Perotti C.Reliability and uncertainties of the analysis of an unstable rock slope performed on RPAS digital outcrop models: The case of the gallivaggio landslide (Western Alps, Italy)[J]. Remote Sensing, 2020, 12(10): 1635. DOI: 10.3390/rs12101635. [21] Dąbski M, Zmarz A, Pabjanek P, et al.UAV-based detection and spatial analyses of periglacial landforms on Demay Point (King George Island, South Shetland Islands, Antarctica)[J]. Geomorphology, 2017, 290: 29-38. DOI: 10.1016/j.geomorph.2017.03.033. [22] Speed C M, Sylvester Z, Durkin P R, et al.Three-dimensional anatomy of a Cretaceous river avulsion[J]. Geology, 2024, 52(12): 885-890. DOI: 10.1130/G52254.1 [23] 李亚林, 王成善, 文华国, 等. 数字露头与野外实践教学平台建设趋势与展望[J]. 中国地质教育, 2021, 30(01): 31-35. DOI: 10.3969/j.issn.1006-9372.2021. 01.008. [24] 王冉. 基于三维数字露头模型的野外地质教学方法探讨[J]. 中国地质教育, 2019, 28(04): 63-66. DOI: 10.3969/j.issn.1006-9372.2019.04.016. [25] 孙信尧, 王平, 张宏, 等. 无人机在沉积学中的应用现状及展望[J]. 地质科技通报, 2023, 42(01): 407-419. DOI: 10.19509/j.cnki.dzkq.2022.0145. [26] 陈建华, 钟瀚霆, 侯明才, 等. 数字露头实景三维Web平台研究与云端地质考察应用[J]. 地球学报, 2024, 45(02): 232-242. DOI: 10.3975/cagsb.2023. 112501. [27] Nieminski N M, Graham S A.Modeling stratigraphic architecture using small unmanned aerial vehicles and photogrammetry: Examples from the Miocene East Coast Basin, New Zealand[J]. Journal of Sedimentary Research, 2017, 87(2): 126-132. DOI: 10.2110/jsr.2017.5. [28] Senger K, Betlem P, Birchall T, et al.Digitising Svalbard’s geology: The Festningen digital outcrop model[J]. First Break, 2022, 40(3): 47-55. DOI: 10.3997/1365-2397.fb2022021. [29] 刘帅, 陈建华, 王峰, 等. 基于无人机倾斜摄影的数字露头实景三维模型构建[J]. 地质科学, 2022, 57(03): 945-957. DOI: 10.12017/dzkx.2022.054. [30] An P J, Fang K, Jiang Q Q, et al.Measurement of rock joint surfaces by using smartphone structure from motion (SfM) photogrammetry[J]. Sensors, 2021, 21(3): 922. DOI: 10.3390/s21030922. [31] Bistacchi A, Balsamo F, Storti F, et al.Photogrammetric digital outcrop reconstruction, visualization with textured surfaces, and three-dimensional structural analysis and modeling: Innovative methodologies applied to fault-related dolomitization (Vajont Limestone, Southern Alps, Italy)[J]. Geosphere, 2015, 11(6): 2031-2048. DOI: 10.1130 /ges01005.1. [32] Saputra A, Rahardianto T, Gomez C.The application of structure from motion (SfM) to identify the geological structure and outcrop studies[C]//International Symposium on Earth Hazard and Disaster Mitigation (Isedm) 2016: the 6th Annual Symposium on Earthquake and Related Geohazard Research for Disaster Risk Reduction, Bandung, Indonesia. Author(s), 2017: 030001. DOI: 10.1063/1.4987060. [33] Westoby M J, Brasington J, Glasser N F, et al.‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications[J]. Geomorphology, 2012, 179: 300-314. DOI: 10.1016/j.geomorph.2012.08.021. [34] 魏占玉, Arrowsmith Ramon, 何宏林, 等. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质, 2015, 37(2): 636-648. DOI: 10.3969/j.issn.0253-4967.2015.02.024. [35] Wang R, Lin J Y, Li L, et al.A revised orientation-based correction method for SfM-MVS point clouds of outcrops using ground control planes with marks[J]. Journal of Structural Geology, 2021, 143: 104266. DOI: 10.1016/j.jsg.2020.104266. [36] 黄五超. 机载激光雷达点云数据分类方法的研究[D]. 西安: 长安大学, 2021. DOI: 10.26976/d. cnki.gchau. 2021.001752. [37] Schönberger J L, Frahm J M.Structure-from-motion revisited[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 4104-4113. DOI: 10.1109/CVPR.2016.445. [38] Telling J, Lyda A, Hartzell P, et al.Review of Earth science research using terrestrial laser scanning[J]. Earth-Science Reviews, 2017, 169: 35-68. DOI: 10.1016/j.earscirev.2017.04.007. [39] Cao T, Xiao A C, Wu L, et al.Automatic fracture detection based on Terrestrial Laser Scanning data: A new method and case study[J]. Computers & Geosciences, 2017, 106: 209-216. DOI: 10.1016/j.cageo.2017.04.003. [40] Cawood A J, Bond C E, Howell J A, et al.LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models[J]. Journal of Structural Geology, 2017, 98: 67-82. DOI: 10.1016/j.jsg.2017.04.004 . [41] 张慧, 王娟, 彭涛, 等. 北京云蒙山大水峪韧性剪切带糜棱岩的变形温度[J]. 岩石学报, 2018, 34(06): 1801-1812. DOI: 1000-0569/2018/034(06)-1801-12. [42] 赵腾格, 侯泉林, 石梦岩, 等. 北京云蒙山变质核杂岩大水峪韧性剪切带的应变特征及构造意义[J]. 岩石学报, 2021, 37(08): 2483-2501. DOI: 10.18654/1000-0569/2021.08.14. [43] Lopac N, Jurdana I, Brnelić A, et al.Application of laser systems for detection and ranging in the modern road transportation and maritime sector[J]. Sensors, 2022, 22(16): 5946. DOI: 10.3390/s22165946. [44] 北京市地质矿产局. 中华人民共和国地质矿产部地质专报—区域地质第27号北京市区域地质志[M]. 北京: 地质出版社, 1991. [45] 张英芳. 北京西山中侏罗世植物古生态和古地理研究[D]. 北京: 中国地质大学(北京), 2006. [46] 刘少峰, 林成发, 刘晓波, 等. 冀北张家口地区同构造沉积过程及其与褶皱-逆冲作用耦合[J].中国科学: 地球科学, 2018, 48(06): 705-731. DOI: 10.1360/N072017-00212. [47] 张宏仁, 张永康, 蔡向民, 等. 燕山运动的“绪动”: 燕山事件[J]. 地质学报, 2013, 87(12): 1779-1790. DOI: 10.19762/j.cnki.dizhixuebao.2013.12.001. [48] Lin C F, Liu S F, Zhuang Q T, et al.Sedimentation of Jurassic fan-delta wedges in the Xiahuayuan basin reflecting thrust-fault movements of the western Yanshan fold-and-thrust belt, China[J]. Sedimentary Geology, 2018, 368: 24-43. DOI: 10.1016/j.sedgeo.2018.03.005. [49] 刘仁钊, 马啸. 无人机倾斜摄影测绘技术[M]. 武汉: 武汉大学出版社, 2021. [50] Menegoni N, Giordan D, Perotti C, et al.Detection and geometric characterization of rock mass discontinuities using a 3D high-resolution digital outcrop model generated from RPAS imagery-Ormea rock slope, Italy[J]. Engineering Geology, 2019, 252: 145-163. DOI: 10.1016/j.enggeo.2019.02.028. [51] Perozzo M, Menegoni N, Foletti M, et al.Evaluation of an innovative, open-source and quantitative approach for the kinematic analysis of rock slopes based on UAV based Digital Outcrop Model: A case study from a railway tunnel portal (Finale Ligure, Italy)[J]. Engineering Geology, 2024, 340: 107670. DOI: 10.1016/j.enggeo.2024.107670. |