欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2014, Vol. 31 ›› Issue (2): 155-159.DOI: 10.7523/jssn.2095-6134.2014.02.002

• 数学与物理学 • 上一篇    下一篇

超二次曲面Q3中的共形极小二维球面

王军1, 钟旭2   

  1. 1. 南京师范大学数学科学学院, 南京 210023;
    2. 中国科学院大学数学科学学院, 北京 100049
  • 收稿日期:2013-03-15 修回日期:2013-05-23 发布日期:2014-03-15
  • 通讯作者: 钟旭,E-mail:zhongxu08@mails.ucas.ac.cn
  • 基金资助:

    Supported by the NSFC(11301273),Doctoral Discipline Foundation for Young Teachers in the Higher Education Institution of Ministry of Education(20123207120002),and Natural Science Research of Jiangsu Higher Education Institutions of China(12KJD110004)

Conformal minimal two-spheres in Q3

WANG Jun1, ZHONG Xu2   

  1. 1. School of Mathematics, Nanjing Normal University, Nanjing 210023, China;
    2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2013-03-15 Revised:2013-05-23 Published:2014-03-15
  • Supported by:

    Supported by the NSFC(11301273),Doctoral Discipline Foundation for Young Teachers in the Higher Education Institution of Ministry of Education(20123207120002),and Natural Science Research of Jiangsu Higher Education Institutions of China(12KJD110004)

摘要:

利用调和序列研究超二次曲面Q3 中的共形极小二维球面,得到四类线性满的常曲率的极小二维球面. 尽管它们在 CP4 中都是极小的,但是它们的几何并不相同.

关键词: 高斯曲率, 超二次曲面, 调和序列, Kähler角, 极小二维球面

Abstract:

In this paper, we study minimal two-spheres in Q3 by harmonic sequence, and we obtain four classes of linearly full minimal two-spheres with constant curvature. Although they are also minimal in CP4, their geometric properties are different.

Key words: Gauss curvature, hyperquadric, harmonic sequence, Kähler angle, minimal two-spheres

中图分类号: