欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2020, Vol. 37 ›› Issue (6): 721-727.DOI: 10.7523/j.issn.2095-6134.2020.06.001

• 数学与物理学 •    下一篇

S2到HP4的共形极小浸入

焦晓祥, 崔洪斌   

  1. 中国科学院大学数学科学学院, 北京 100049
  • 收稿日期:2019-04-03 修回日期:2019-05-06 发布日期:2020-11-15
  • 通讯作者: 崔洪斌
  • 基金资助:
    Supported by the NSFC(11871450)

Conformal minimal immersions of S2 into HP4

JIAO Xiaoxiang, CUI Hongbin   

  1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-04-03 Revised:2019-05-06 Published:2020-11-15
  • Supported by:
    Supported by the NSFC(11871450)

摘要: 本工作是Chen和Jiao工作的推广。他们考虑在四元数射影空间中如何具体构造常曲率共形极小二球,关键点是从CP2n+1里的Veronese序列找到一些相关的水平浸入,然后关于扭映射π:CP2n+1→ HPn做投影就得到HPn的常曲率共形极小二球。Chen和Jiao计算了n=2的情况,本工作处理n=4的情况和一个相关的几何现象。

关键词: 极小二球, 高斯曲率, Veronese序列, 四元数射影空间

Abstract: This work is a generalization of Chen and Jiao's work, where they considered the question of explicit construction of some conformal minimal two-spheres of constant curvature in quaternionic projective space. The crucial point was to find some horizontal immersions derived from Veronese sequence in CP2n+1, which was projected into constant curvature conformal minimal two-spheres by twistor map π:CP2n+1→HPn. They calculated the case n=2. In this work, we deal with the case n=4 and a related geometry phenomenon.

Key words: minimal two-sphere, Gaussian curvature, Veronese sequence, quaternionic projective space

中图分类号: