欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2010, Vol. 27 ›› Issue (5): 577-583.DOI: 10.7523/j.issn.2095-6134.2010.5.001

• 论文 •    下一篇

渗流簇中鞅中心极限定理的收敛速度

姜建平, 张三国, 郭田德   

  1. 中国科学院研究生院数学科学学院, 北京 100049
  • 收稿日期:2010-03-09 修回日期:2010-04-16 发布日期:2010-09-15
  • 通讯作者: 姜建平
  • 基金资助:

    Supported by Knowledge Innovation Program of the Chinese Academy of Sciences(kjcx-yw-s7), the National Natural Science Foundation of China (10831006) and Presidential Foundation of GUCAS(O85101BM03) 

Convergence rate in a martingale CLT for percolation clusters

JIANG Jian-Ping, ZHANG San-Guo, GUO Tian-De   

  1. School of Mathematical Sciences, Graduate University, Chinese Academy of Sciences, Beijing 100049, China
  • Received:2010-03-09 Revised:2010-04-16 Published:2010-09-15
  • Supported by:

    Supported by Knowledge Innovation Program of the Chinese Academy of Sciences(kjcx-yw-s7), the National Natural Science Foundation of China (10831006) and Presidential Foundation of GUCAS(O85101BM03) 

摘要:

考虑定义在Zd上参数为p的边渗流模型.假设Kn[-n,n]d中开簇的个数,研究了关于Kn的鞅中心定理的收敛速度.一般情况下,经鞅中心极限定理的最好收敛速度是O(n-d/2),而我们的结果为Pp((Kn-Ep(Kn))/(Varp(Kn))) ≤x =x-∞(1/(2π)) e(-y2)/2dy+o(n-d/2 +ε0)对任意的实数x都成立,这里ε0是区间 0, d/2 上的任意实数.据我们所知,这是关于渗流中心极限定理收敛速度的第一结果.

 

关键词: 渗流, 鞅, 中心极限定理, 收敛速度

Abstract:

Consider bond percolation on Zd with parameter p. Let Kn be the number of open clusters in [-n,n]d. We investigate the convergence rate in the martingaleCLT for Kn. Generally, the best convergence rate for classicalmartingale CLT is O(n-d/2), and our result is Pp((Kn-Ep(Kn))/(Varp(Kn))) ≤x =x-∞(1/(2π)) e(-y2)/2dy+o(n-d/2 +ε0) for all x, where ε0 is any constant real number in 0, d/2 . As far as we know, this is the first convergence rate in CLTs for percolation.

 

Key words: percolation, martingale, central limit theorem, rate of convergence

中图分类号: