欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2021, Vol. 38 ›› Issue (3): 333-340.DOI: 10.7523/j.issn.2095-6134.2021.03.006

• 环境科学与地理学 • 上一篇    下一篇

基于CMIP5模式的2006—2017年中亚降水预估误差分析

黄芳1,2, 甘淼1, 于洋1,2, 他志杰3, 张海燕1,2, 皮原月1,2, 孙凌霄1,2, 于瑞德1,2   

  1. 1. 中国科学院新疆生态与地理研究所 荒漠与绿洲生态国家重点实验室, 乌鲁木齐 830011;
    2. 中国科学院大学, 北京 100049;
    3. 西北农林科技大学, 西安 712100
  • 收稿日期:2019-07-25 修回日期:2019-11-21 发布日期:2021-05-17
  • 通讯作者: 甘淼
  • 基金资助:
    中国科学院百人计划C类(Y931201)和中国科学院新疆生态与地理研究所高层次人才培育计划专项(Y871171)资助

Error analysis concerning 2006-2017 Central Asia precipitation estimation based on CMIP5 model

HUANG Fang1,2, GAN Miao1, YU Yang1,2, TA Zhijie3, ZHANG Haiyan1,2, PI Yuanyue1,2, SUN Lingxiao1,2, YU Ruide1,2   

  1. 1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Northwest Agriculture and Forestry University, Xian 712100, China
  • Received:2019-07-25 Revised:2019-11-21 Published:2021-05-17

摘要: 利用第5次耦合模式计划(CMIP5)的24个模式模拟数据,与英国East Anglia大学气候研究中心Climatic Research Unit(CRU)提供的2006—2017年的月降水格点数据进行比较,通过误差空间分布、误差百分率、标准差以及误差趋势分析,对多模式集合下的中亚降水预估误差进行评估。结果表明:模式集合对中亚大部分地区的年均降水预估偏多,尤其是东南部帕米尔高原与西天山的少数区域,误差偏大明显;夏半年(6—11月)在中亚东南及南部部分地区降水预估明显偏多,对中亚东北大部分区域降水预估偏少但不明显;冬半年(12及1—5月)中亚大部分区域降水量预估偏多,帕米尔高原西部部分区域以及巴尔喀什湖东部降水预估偏少,预估偏多与偏少均不明显。同时发现,中亚西部与西北部年、夏半年、冬半年模式间标准差均小于中亚东部及东南部;中亚大部分地区尤其中部的年、夏半年与冬半年降水预估误差均呈现减小趋势;厄尔尼诺年以及拉尼娜年的降水预估误差的空间分布决定多年平均预估误差分布特征。各种误差分析表明,直接使用CMIP5模式预估未来降水存在较大的不确定性,可能多来自模式本身存在的问题,如分辨率及地形处理、积云对流参数化方案、降水物理过程等描述不完善。

关键词: CMIP5, 中亚降水, 多模式集合, 误差分析

Abstract: The 24-model simulated data of the coupled model intercomparison project phase 5 (CMIP5) are used to compare with the 2006-2017 monthly precipitation grid data provided by the Climatic Research Unit (CRU) of the University of East Anglia from UK, and the evaluation of the precipitation estimation error concerning Central Asia under the multi-model ensemble is conducted through analysis of error spatial distribution, percentage errors, standard deviations and error trends. The results show that the model-ensemble precipitation is overestimated in most part of Central Asia, and it is obvious in the south-east Pamirs and West Tianshan Mountains; in the summer-half year, it is obviously overestimated in some regions of the south-eastern and southern Central Asia, but underestimated in north-east Central Asia; while in the winter-half year, it is overestimated in most part of Central Asia, and the precipitation is underestimated in the eastern Balkhash Lake and some regions in western Pamirs Plateau, with both the estimations errors are not obvious. Meanwhile, it is discovered that, the standard deviations in western and north-western parts of Central Asia among the annual, summer-half year and winter-half year are less than those in eastern and south-eastern parts of Central Asia; and the annual, summer-half year and winter-half year precipitation errors concerning most regions in Central Asia especially its middle part all show a declining trend; the spatial distribution of precipitation estimation error in El Nino and La Nina years determined the characteristics of the multi-year average estimated error distribution. The different error analysis shows that there would be severe larger uncertainty if estimating Central Asia precipitation directly using the CMIP5 outputs, and such uncertainty is most probably the result of the model's inherent problems, such as the defective descriptions of resolution ratio and topographic treatment, cumulus convection parameterization scheme, physical process of precipitation.

Key words: CMIP5, precipitation in Central Asia, multi-model ensemble, error analysis

中图分类号: