欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2004, Vol. 21 ›› Issue (2): 153-163.DOI: 10.7523/j.issn.2095-6134.2004.2.002

• 综述 • 上一篇    下一篇

微分几何中几个不等式及其推广

马宏宾1, 孙振祖2   

  1. 1. 中国科学院系统科学研究所, 北京 100080;
    2. 郑州大学数学系, 郑州 450052
  • 收稿日期:2003-03-04 修回日期:2003-06-02 发布日期:2004-03-19

Several Inequalities in Differential Geometry and Their Generalizations

MA Hong-Bin1, SUN Zhen-Zu2   

  1. 1. Institute of Systems Science, AMSS, Chinese Academy of Sciences, Beijing 100080, China;
    2. Department of Mathematics and Systems Science, Zhengzhou University, Zhengzhou 450052, China
  • Received:2003-03-04 Revised:2003-06-02 Published:2004-03-19

摘要:

研究了微分几何中的几个不等式,提出了几个相关的不等式.(1)对平面上的Schur定理,给出了一种解析的证法,它比已知的一些 (几何的)证法显得简洁、明快,进而还用积分几何方法作了些讨论.(2)对欧氏空间中闭曲线的Fáry不等式,用活动标架法,将其推广到了球面 (正常高斯曲率曲面)中.(3)对三维欧氏空间中闭曲面的Fáry不等式,用活动标架法,将其中积分式前的常系数 4 π进一步改进为 1;此外,还将其推广到四维的欧氏空间中.这一不等式可能推广于更高维或一般的欧氏空间中,有待进一步研究.

关键词: Schur定理, Fá, ry不等式, 积分几何, 活动标架法, 高斯曲率

Abstract:

Several inequalities are discussed. (1) For Schur. s inequality on convex curves of plane, we give a newanalytic proof for it, which maybe is simpler or clearer than known ones; we make further discussions by means ofintegral geometry and get more results. Moreover several related inequalities are put forward and proved. We alsopropose a conjecture which is generalization of Schur. s inequality in case of spherical surface. (2) For Fáry. s inequalityon closed curves of Euclidean space E3, we generalize it into spherical surface (i. e. surface with positiveconstant Gauss curvature) using method of moving frame. (3) For Fáry. s inequality on closed surface of Euclideanspace E3 : , we enhance it to using method of moving frame. Moreover thisinequality has been also generalized into 4-dimension case: Furthermore, a conjectureon further generalization to higher dimension case or general Euclidean space is proposed which requires furtherstudy.

Key words: Schur’s inequality, F?ry’s inequality, integral geometry, moving frame, Gauss curvature

中图分类号: