欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2014, Vol. 31 ›› Issue (2): 238-242.DOI: 10.7523/jssn.2095-6134.2014.02.014

• 信息与电子科学 • 上一篇    下一篇

一种基于双树复小波变换的SAR图像边缘检测算法

毛成林, 万寿红, 岳丽华, 夏瑜   

  1. 中国科学技术大学计算机科学与技术学院, 合肥 230027
  • 收稿日期:2013-04-25 修回日期:2013-07-15 发布日期:2014-03-15
  • 通讯作者: 万寿红,E-mail:wansh@ustc.edu.cn
  • 基金资助:

    国家自然科学基金面上基金(61272317)和安徽省自然科学基金面上基金(1208085MF90)资助

An edge detection algorithm of SAR images based on dual-tree complex wavelet transform

MAO Chenglin, WAN Shouhong, YUE Lihua, XIA Yu   

  1. School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China
  • Received:2013-04-25 Revised:2013-07-15 Published:2014-03-15

摘要:

提出一种新的基于双树复小波变换的SAR图像边缘检测算法. 算法在复小波子带上求取图像直方图方向梯度矩阵,并基于复小波变换的多尺度性质和方向选择性求取全局的梯度矩阵. 通过对这一矩阵阈值化实现边缘检测. 该算法能有效检测出SAR图像上的显著边缘,并对SAR图像中存在的相干斑噪声、灰度不均匀性和边缘模糊等现象具有一定的鲁棒性. 实验结果证明了该算法的有效性.

关键词: SAR图像, 边缘检测, 双树复小波变换, 多尺度, 方向选择性, 直方图方向梯度

Abstract:

We propose an edge detection algorithm of SAR images based on dual-tree complex wavelet transform. We use the oriented gradient of histogram method to calculate the gradient matrix on all complex wavelet subbands, and acquire the global matrix based on the directional selectivity and multi-scale property of dual-tree complex wavelet transform. The edges are extracted by thresholding the matrix. The proposed algorithm effectively detects significant edges, and it is robust to the speckle noise, intensity inhomogeneity, and blurred boundaries of SAR images. The experimental results show effectiveness of the proposed algorithm.

Key words: SAR image, edge detection, dual-tree complex wavelet transform, multi-scale, directional selectivity, oriented gradient of histogram

中图分类号: