欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2016, Vol. 33 ›› Issue (3): 298-301.DOI: 10.7523/j.issn.2095-6134.2016.03.002

• 数学与物理学 • 上一篇    下一篇

SK1(Ζ[C4×C4], 2Ζ[C4×C4])的结构

杨正国, 唐国平   

  1. 中国科学院大学数学科学学院, 北京 100049
  • 发布日期:2016-05-15
  • 通讯作者: 杨正国
  • 基金资助:

    Supported by National Natural Science Foundation of China(11371343) 

Structure of SK1(Ζ[C4×C4], 2Ζ[C4×C4])

YANG Zhengguo, TANG Guoping   

  1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Published:2016-05-15
  • Supported by:

    Supported by National Natural Science Foundation of China(11371343) 

摘要:

主要研究整群环Ζ[C4×C4]的K理论.证明整群环Ζ[C4×C4]的相对SK1群为秩是3的初等阿贝尔群.也证明了K2(Ζ[C4×C4])的4秩至少是1,K2(Ζ[C4×C4])的2秩至少是10.

关键词: 整群环, 相对SK1群, K2

Abstract:

In this paper we study the K-theory of the integral group ring Ζ[C4×C4]. We prove that the relative SK1 group of the integral group ring Ζ[C4×C4] is an elementary Abelian group of rank-3. We also show that the 4-rank of K2(Ζ[C4×C4]) is at least 1 and the 2-rank of K2(Ζ[C4×C4]) is at least 10.

Key words: integral group ring, relative SK1 group, K2 group

中图分类号: