欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2019, Vol. 36 ›› Issue (3): 289-298.DOI: 10.7523/j.issn.2095-6134.2019.03.001

• 综述 •    下一篇

基于角度的分类方法综述

付盛, 薛原, 张三国   

  1. 中国科学院大学数学科学学院, 北京 100049
  • 收稿日期:2018-01-02 修回日期:2018-01-02 发布日期:2019-05-15
  • 通讯作者: 张三国
  • 基金资助:
    Supported by the Special Fund of University of Chinese Academy of Sciences for Scientific Research Cooperation (Y652022Y00)

Survey on angle-based classification

FU Sheng, XUE Yuan, ZHANG Sanguo   

  1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-01-02 Revised:2018-01-02 Published:2019-05-15
  • Supported by:
    Supported by the Special Fund of University of Chinese Academy of Sciences for Scientific Research Cooperation (Y652022Y00)

摘要: 统计分类问题经常出现在很多应用中,如人脸识别、欺诈检测和手写字符识别等。对有监督分类问题的统计方法进行综述。特别地,介绍基于角度的分类结构,将二分类与多分类问题纳入一个统一的框架中。讨论基于角度分类器的若干新变体,如稳健学习和加权学习。此外,还指出这些分类器关于Fisher相合性的若干理论结果。

关键词: 基于角度的分类框架, Fisher相合性, 稳健学习, 统计分类, 加权学习

Abstract: Statistical classification problems are widely encountered in many applications, e.g., face recognition, fraud detection, and hand-written character recognition. In this article we make a comprehensive analysis on statistical methods for supervised classification problems. Specifically, we introduce the angle-based classification structure, which combines binary and multicategory problems in a unified framework. Several new variants of the angle-based classifiers are also discussed, such as robust learning and weighted learning. Furthermore, we show some theoretical results about Fisher consistency for these angle-based classifiers.

Key words: angle-based classification framework, Fisher consistency, robust learning, statistical classification, weighted learning

中图分类号: