欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2025, Vol. 42 ›› Issue (1): 107-115.DOI: 10.7523/j.ucas.2023.079

• 电子信息与计算机科学 • 上一篇    

高分辨率关系图卷积网络遥感语义分割方法

王寅达1,2, 陈嘉辉1,3, 彭玲1,3, 李兆博1,3, 杨丽娜1,3   

  1. 1. 中国科学院空天信息创新研究院, 北京 100094;
    2. 中国科学院大学电子电气与通信工程学院, 北京 100049;
    3. 中国科学院大学, 北京 100049
  • 收稿日期:2023-07-07 修回日期:2023-10-07 发布日期:2023-10-25
  • 通讯作者: 彭玲,E-mail:pengling@aircas.ac.cn
  • 基金资助:
    全球能源互联网集团有限公司科技项目(SGGEIG00JYJS2100032)资助

Remote sensing semantic segmentation method based on high-resolution relational graph convolutional network

WANG Yinda1,2, CHEN Jiahui1,3, PENG Ling1,3, LI Zhaobo1,3, YANG Lina1,3   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
    2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-07-07 Revised:2023-10-07 Published:2023-10-25

摘要: 遥感影像语义分割是遥感图像处理分析的重要任务,尤其是在多类别语义分割方面。目前方法主要围绕卷积神经网络展开,但卷积仅关注图像局部信息而忽视全局信息。因此,受高分辨率网络(HRNet)和关系图卷积网络(R-GCN)启发,提出一种高分辨率关系图卷积网络(HRGCN),用于多类别语义分割。首先对原始图像做简单线性迭代聚类(SLIC),利用该结果分割HRNet输出的特征图,获得同质性高且包含多分辨率信息的超像素块;然后基于超像素块构建图节点和边,使用R-GCN对图节点分类,从而学习到不同地物间长距离依赖关系,并完成遥感影像的提取分类。利用HRGCN模型在Potsdam和Vaihingen数据集上进行实验,将结果与已有方法对比,$\bar{F}_1$值和MIoU值均有不同程度提升,证明该方法具有较好的先进性。

关键词: 遥感影像, R-GCN, HRNet, 超像素, 语义分割, 图像处理

Abstract: Semantic segmentation of remote sensing images is an important task in remote sensing image processing and analysis, especially in multi-category semantic segmentation. Current methods mainly revolve around convolutional neural networks, but convolution only focuses on the local information of the image while ignoring the global information. Therefore, inspired by high resolution network (HRNet) and relational graph convolutional network (R-GCN), this paper proposes a high-resolution relational graph convolutional network (HRGCN) for multi-category semantic segmentation. Firstly, simple linear iterative clustering (SLIC) is done on the original image, and the result is used to segment the feature map output from HRNet to obtain superpixel blocks with high homogeneity and containing multi-resolution information; then graph nodes and edges are constructed based on the superpixel blocks, and R-GCN is used to classify the graph nodes, so as to learn the long-distance dependency between different features and complete the extraction and classification of remote sensing images. The HRGCN model designed in this paper is experimented on Potsdam and Vaihingen datasets, and the results are compared with the existing methods, and the $\bar{F}_1$ values and MIoU values are improved to certain degrees, which proves that the method has good advancement.

Key words: remote sensing image, R-GCN, HRNet, superpixel, semamtic segmentation, image processing

中图分类号: