[1] 刘竹, 耿涌, 薛冰, 等. 城市能源消费碳排放核算方法[J]. 资源科学, 2011, 33(7): 1325-1330. [2] 顾朝林, 谭纵波, 刘宛, 等. 气候变化、碳排放与低碳城市规划研究进展[J]. 城市规划学刊, 2009(3): 38-45. DOI: 10.3969/j.issn.1000-3363.2009.03.005. [3] Guan D B, Liu Z, Geng Y, et al. The gigatonne gap in China’s carbon dioxide inventories[J]. Nature Climate Change, 2012, 2(9): 672-675. DOI: 10.1038/nclimate1560. [4] Liu Z, Guan D B, Wei W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524(7565): 335-338. DOI: 10.1038/nature14677. [5] Gurney K R, Romero-Lankao P, Seto K C, et al. Climate change: track urban emissions on a human scale[J]. Nature, 2015, 525(7568): 179-181. DOI: 10.1038/525179a. [6] Shan Y L, Guan D B, Liu J H, et al. Methodology and applications of city level CO2 emission accounts in China[J]. Journal of Cleaner Production, 2017, 161: 1215-1225. DOI: 10.1016/j.jclepro.2017.06.075. [7] Chen D K, Chen S Y, Jin H. Industrial agglomeration and CO2 emissions: evidence from 187 Chinese prefecture-level cities over 2005-2013[J]. Journal of Cleaner Production, 2018, 172: 993-1003. DOI: 10.1016/j.jclepro.2017.10.068. [8] Davis S J, Caldeira K. Consumption-based accounting of CO2 emissions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(12): 5687-5692. DOI: 10.1073/pnas.0906974107. [9] Cai B F, Liang S, Zhou J, et al. China high resolution emission database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data[J]. Resources, Conservation and Recycling, 2018, 129: 232-239. DOI: 10.1016/j.resconrec.2017.10.036. [10] Wang H, Zhang R, Liu M, et al. The carbon emissions of Chinese cities[J]. Atmospheric Chemistry and Physics, 2012, 12(14): 6197-6206. DOI: 10.5194/acp-12-6197-2012. [11] Byrne B, Baker D F, Basu S, et al. National CO2 budgets (2015-2020) inferred from atmospheric CO2 observations in support of the global stocktake[J]. Earth System Science Data, 2023, 15(2): 963-1004. DOI: 10.5194/essd-15-963-202. [12] Shan Y L, Guan D B, Zheng H R, et al. China CO2 emission accounts 1997-2015[J]. Scientific Data, 2018, 5: 170201. DOI: 10.1038/sdata.2017.201. [13] Eggleston H S, Buendia L, Miwa K, et al. 2006 IPCC guidelines for national greenhouse gas inventories[R]. kanagawa, Japan: Institute of Global Environmental Strategies. 2006. [14] Elvidge C, Ziskin D, Baugh K, et al. A fifteen year record of global natural gas flaring derived from satellite data[J]. Energies, 2009, 2(3): 595-622. DOI: 10.3390/en20300595. [15] Su Y X, Chen X Z, Li Y, et al. China’s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines[J]. Renewable and Sustainable Energy Reviews, 2014, 35: 231-243. DOI: 10.1016/j.rser.2014.04.015. [16] Wang S J, Liu X P. China’s city-level energy-related CO2 emissions: spatiotemporal patterns and driving forces[J]. Applied Energy, 2017, 200: 204-214. DOI: 10.1016/j.apenergy.2017.05.085. [17] Sun Y, Zheng S, Wu Y Z, et al. Spatiotemporal variations of city-level carbon emissions in China during 2000-2017 using nighttime light data[J]. Remote Sensing, 2020, 12(18): 2916. DOI: 10.3390/rs12182916. [18] Chen J D, Gao M, Cheng S L, et al. China’s city-level carbon emissions during 1992-2017 based on the inter-calibration of nighttime light data[J]. Scientific Reports, 2021, 11: 3323. DOI: 10.1038/s41598-021-81754-y. [19] 张晓平, 高珊珊, 陈明星, 等. 夜间灯光数据在城市化及其资源环境效应研究中的热点主题追踪[J]. 中国科学院大学学报, 2022, 39(4): 490-501. DOI: 10.7523/j.ucas.2021.0010. [20] Liu X P, Ou J P, Wang S J, et al. Estimating spatiotemporal variations of city-level energy-related CO2 emissions: an improved disaggregating model based on vegetation adjusted nighttime light data[J]. Journal of Cleaner Production, 2018, 177: 101-114. DOI: 10.1016/j.jclepro.2017.12.197. [21] Wei W, Zhang X Y, Zhou L, et al. How does spatiotemporal variations and impact factors in CO2 emissions differ across cities in China?:investigation on grid scale and geographic detection method[J]. Journal of Cleaner Production, 2021, 321: 128933. DOI: 10.1016/j.jclepro.2021.128933. [22] Shi K F, Shen J W, Wu Y Z, et al. Carbon dioxide (CO2) emissions from the service industry, traffic, and secondary industry as revealed by the remotely sensed nighttime light data[J]. International Journal of Digital Earth, 2021, 14(11): 1514-1527. DOI: 10.1080/17538947.2021.1946605. [23] Meng X, Han J, Huang C. An improved vegetation adjusted nighttime light urban index and its application in quantifying spatiotemporal dynamics of carbon emissions in China[J]. Remote Sensing, 2017, 9(8): 829. DOI: 10.3390/rs9080829. [24] Lin X W, Ma J J, Chen H, et al. Carbon emissions estimation and spatiotemporal analysis of China at city level based on multi-dimensional data and machine learning[J]. Remote Sensing, 2022, 14(13): 3014. DOI: 10.3390/rs14133014. [25] 林伯强, 孙传旺. 如何在保障中国经济增长前提下完成碳减排目标[J]. 中国社会科学, 2011(1): 64-76, 221. [26] 赵海霞, 李赟, 石洪波. 基于高维数据的加权朴素贝叶斯算法研究[J]. 统计与决策, 2020, 36(8): 5-9. DOI: 10.13546/j.cnki.tjyjc.2020.08.001. [27] Székely G J, Rizzo M L, Bakirov N K. Measuring and testing dependence by correlation of distances[J]. The Annals of Statistics, 2007, 35(6): 2769-2794. DOI: 10.1214/009053607000000505. [28] Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data Sets[J]. Science, 2011, 334(6062): 1518-1524. DOI: 10.1126/science.1205438. [29] 刘占成, 王安建, 于汶加, 等. 中国区域碳排放研究[J]. 地球学报, 2010, 31(5): 727-732. [30] 温馨. “双碳”目标下的能源转型:多维阐释与中国策略[J]. 贵州社会科学, 2021(10): 145-151. DOI: 10.13713/j.cnki.cssci.2021.10.014. [31] IPCC. Climate change:2007 the fourth assessment report of IPCC[M/OL]. Cambridge,UK:Cambridge University Press, 2007. (2007-05-30) [2023-03-11]. https://sciencepolicy.colorado.edu/admin/publication_files/resource-2523-Alvord_ipcc.pdf. [32] 刘卫东, 唐志鹏, 夏炎, 等. 中国碳强度关键影响因子的机器学习识别及其演进[J]. 地理学报, 2019, 74(12): 2592-2603. DOI: 10.11821/dlxb201912012. [33] Chen Z Q, Yu B L, Yang C S, et al. An extended time series (2000-2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration[J]. Earth System Science Data, 2021, 13(3): 889-906. DOI: 10.5194/essd-13-889-2021. [34] 周彦楠, 杨宇, 程博, 等. 基于脱钩指数和LMDI的中国经济增长与碳排放耦合关系的区域差异[J]. 中国科学院大学学报, 2020, 37(3): 295-307. DOI: 10.7523/j.issn.2095-6134.2020.03.002. [35] Shan Y L, Liu J H, Liu Z, et al. An emissions-socioeconomic inventory of Chinese cities[J]. Scientific Data, 2019, 6: 190027. DOI: 10.1038/sdata.2019.27. [36] Shan Y L, Guan D B, Liu J H, et al. Methodology and applications of city level CO2 emission accounts in China[J]. Journal of Cleaner Production, 2017, 161: 1215-1225. DOI: 10.1016/j.jclepro.2017.06.075. [37] 于智涵, 方丹, 杨谨. 资源型经济转型试验区政策对碳排放的影响评估:以山西省为例[J]. 资源科学, 2021, 43(6): 1178-1192. DOI: 10.18402/resci.2021.06.10. |