[1] Shi Y. Multiple criteria mult iple constraint-levels linear programming: concepts, techniques and application s [M]. New Jersey, River Edge:World Scientific Publishing, 2001.
[2] Shi Y, Wise M, Luo M, et al. Data mining in credit card portfolio management: a multiple cri teria decision making approach [C]//Koksalan M, Zionts S (Eds.). Mult iple Criteria Decision Making in the New Millennium. Berlin: Springer,2001:427 -436.
[3] Shi Y, Peng Y, Xu X, et al. Data mining via multiple crite ria linear programming: applications in credit card portfolio management [J]. Information Technology and Decision Making, 2002, 1 (1): 145-166.
[4] Kou G, Liu X, Peng Y, et al. Multiple criteria linear prog ramm ing approach to data mining: models, algorithm designs and software development [J]. Optimization Methods and Software, 2003, 18 (4): 453-473.
[5] He J, Shi Y, Xu W X. Classificati ons of credit cardholder behavior by using multiple mriteria non-linear program ming [C]//Shi Y, Xu W X, Chen Z X(Eds.). CASDMKM 2004, LNAI 3327. 2004: 154 -163.
[6] Peng Y, Shi Y, Li X S, et al. E-business intelligence via MCMP -based data mining methods [C]//Zhong N, et al(Eds.).WImBI2006,LNAI4845 . 2007: 443-453.
[7] Zhu M H, Li A H, Shi Y, et al. A bias-variance analysis o f mu ltiple criteria linear programming classification ensembles [C]//2008IEEE /WIC/ACM International Conference on Web Intelligence and Intelligent Agent Tech nology. 2008:447-450.
[8] Shi Y, He J,Wang L,et al. Computer-based a lgorithms for mul tiple criteria and multipleconstraint level integer linear programming [J]. Computersand Mathematics with Applications, [WTBZ] 2005,49:903-921.
[9] Li A H, Shi Y. An integr ated classification method: combination of MCLP and LDA [C]//Deng X, Y e Y(Eds.). WINE2005, LNCS3828.2005: 758-767.
[10] Peng Y, Kou G, Shi Y, et al. A new m ulti-criteria convex quadratic programming mode for credit data analysis [J]. Decision Support Systems [WTBZ], 2008.10.1016/j.dss.2007.12.001.
[11] Domingos P. A unified bias-variance decomposition and its applicati ons [C]//Proceedings of the 17th International Conference on Machine Learning . Stanford, CA: Morgan Kaufmann, 2000: 231-238.
[12] Geman S, Bienenstock E, Doursat R. Neural networks and the bias/ variance dilemma [J]. Neural Computation [WTBZ], 1992, 4: 1-48.
[13] Kong E B, Dietterich T G. Error-correc ting output coding corrects bias and variance [C]//Proceedings of the 12t h International Conference on Machine Learning.1995: 313-321 C.
[14] Kohavi R, Wolpert D H. Bias plus variance decomposition for zero-o ne loss functions [C]//Proce edings of the 13th International Conference on Machine Learning, the 7th Interna tional Conference on Machine Learning. Bari, Italy: Morgan Kaufm ann, 1996: 275-283.
[15] Gareth M J. Variance and bias for general loss functions [J]. Machine Learning, 2003, 51(2): 115-135.
[16] Valentini G, Dietterich T G. Bias-variance analysis of support vector machines for the development of SV M-based ensemble methods [J]. Journal of Machine Learning Research, [WTBZ] 2004,5: 725-775.
[17] Richard A J, Dean W W. Applied multivariate statistical analysis [M]. 北京:清华大学出版社,2001.
[18] Glen J J. A comparison of standard and two-stage mathematical prog ramming discriminant analysis methods [J]. European Journal of Operatio nal Research, [WTBZ]2006,171:496-515.
[19] Han J W, Kamber M. 数据挖掘:概念与技术 [M].范 明,孟小峰译.北京 :机械工业出版社,2007.
[20] UCI repository of machine learning databases [R]. http://www.ics. uci.edu/~mlearn/ MLRepository.html.
|