[1] Heisenberg W. über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik[J]. Zeit Phys, 1927, 43:172-198.
[2] Kennard. E. Zur Quantenmechanik einfacher Bewegungstypen [J]. Z Phys, 1927, 44:326-352.
[3] Robertson H P. The uncertainty principle[J]. Phys Rev, 1929, 34:163-164 .
[4] Schrödinger E. Sitzungsberichte der preussischen akademie der wissenschaften, physikalisch-mathematische klasse[J]. 1930, 14:296.
[5] Maccone L, Pati A K. Stronger uncertainty relations for all incompatible observables[J]. Phys Rev Lett, 2014, 113:260401.
[6] Song Q C, Qiao C F. Stronger Schrödinger-like uncertainty relations[J]. arXiv:1504.01137.
[7] Bannur V M. Comments on "stronger uncertainty relations for all incompatible observables". arXiv:1502.04853.
[8] Li J L, Qiao C F. Reformulating the quantum uncertainty relation[J]. Scientific Reports, 2015,5:12708.
[9] Huang Y. Variance-based uncertainty relations[J]. Phys Rev A, 2012, 86:024101.
[10] Yao Y, Xiao X, Wang X G, et al. Implications and applications of the variance-based uncertainty equalities[J]. Physics Review A, 2015,91: 062113.
[11] Pati A K, Wu J. Uncertainty and complementarity relations in weak measurement[J]. arXiv:1411.7218.
[12] Aharonov Y, Albert D Z, Vaidman L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100[J]. Phys Rev Lett, 1988, 60:1 351-1 354.
[13] Long G L. General quantum interference principle and duality computer[J]. Commun Theor Phys, 2006, 45(5):825-844.
[14] Long G L. Duality quantum computing and quntum information processing[J]. Int J Theor, 2011, 50:1 305-1 318.
[15] Anandan J S. Geometric phase for cyclic motions and the quantum state space metric[J]. Phys Lett A, 1990, 147:3-8.
[16] Pati A K, Singh U, Sinha U. Quantum theory allows measurement of non-Hermitian operators[J]. arXiv:1406.3007. |