[1] Buchberger B. Grbner bases: An algorithmic method in polynomial ideal theory //Multidimensional System Theory. Dordrecht: Bose N K, Reidel D Publishing Company, 1985.
[2] Dahan X, Schost E, Wu J. Evaluation properties of invariant polynomials [J]. Journal of Symbolic Computation, 2009,44(11):1592-1604.
[3] Gaudry P, Schost E, Thiery N. Evaluation properties of symmetric polynomials [J]. Internat J Algebra Comput, 2006, 16(3): 505-523.
[4] Cox D, Little J, O’shea D. Ideals, varieties and algorithms . 2nd edition. Springer-Verlag, 1996.
[5] Derksen H, Kemper G. Computational Invariant Theory //Volume 130 of Encyclopaedia of Mathematical Sciences. Springer Verlag, 2002.
[6] Arnold E A. Modular algorithms for computing Grbner bases [J]. Journal of Symbolic Computation, 2003, 35: 403-419.
[7] Schost E. Complexity results for triangular sets [J]. Journal of Symbolic Computation, 2003, 36(3-4): 555-594.
[8] Faugere J C, Gianni P, Lazard D, et al. Efficient computation of zero-dimensional Grbner bases by change of ordering [J]. Journal of Symbolic Computation, 1993, 16(4):329-344.
[9] Sturmfels B. Algorithms in invariant theory //Texts and Monographs in Symbolic Computation. Springer-Verlag, 1993.
[10] Hong H. Groebner basis under composition Ⅱ //International Conference on Symbolic and Algebraic Computation. 1996.
[11] Schost E. Computing parametric geometric resolutions [J]. Applicable Algebra in Engineering, Communication and Computing, 2003, 13(5): 349-393.
[12] Cox D, Little J, O’shea D. Using algebraic geometry [M]. New York-Berlin-Heidelberg: Springer-Verlag, 1997.
[13] von zur Gathen J, Gerhard J. Modern computer algebra [M]. Cambridge University Press, 1999.
[14] Kaltofen E. Greatest common divisors of polynomials given by straight-line programs [J]. J ACM, 1988,35(1):231-264.
[15] Giusti M, Lecerf G, Salvy B. A Grbner free alternative for polynomial system sloving [J]. J Complexity, 2001,17(2):154-211.
|