[1] Kesten H. On the number of self-avoiding walks[J]. Journal of Mathematical Physics, 1963, 4(7): 960-969.[2] Madras N, Slade G. The self-avoiding walk[M]. Birkhauser, Boston, 1993: 229-242.[3] Madras N. A pattern theorem for lattice clusters[J]. Annals of Combinatorics, 1999, 3(2): 357-384.[4] van der Hofstad R, Kager W. Pattern theorems, ratio limit theorems and gumbel maximal clusters for random fields[J]. Journal of Statistical Physics, 2008,130(3): 503-522.[5] Grimmett G. Percolation[M]. 2nd ed. Berlin: Springer-Verlag, 1999.[6] Mcleish D L. Dependent central limit theorems and invariance principles[J]. Annals of Probability, 1974, 2(4):620-628.[7] Kesten H, Zhang Y. A central limit theorem for critical first passage percolation in two dimensions[J]. Probability Theory and Related Fields, 1997, 107(2): 137-160.[8] Zhang Y. A martingale approach in the study of percolation clusters on the Zd lattice[J]. Journal of Theoretical Probability, 2001, 14(1): 165-187.[9] Penrose M. A central limit theorem with applications to percolation, epidemics and boolean models[J]. Annals of Probability, 2001, 29(4): 1515-1546.[10] Jiang J P, Zhang S G, Guo T D. Convergence rate in a martingale CLT for percolation clusters [J]. Journal of the Graduate School of the Chinese Academy of Science, 2010, 27(5): 577-583.[11] [JP5]Kesten H. Scaling relations for 2D-percolation[J]. Communications in Mathematical Physics, 1987, 109(1):109-156.[12] Kesten H, Zhang Y. The probability of a large finite cluster in supercritical Bernoulli percolation [J]. Annals of Probability, 1990, 18(2): 537-555. |