[1] Bohlmark J, Alami J, Christou C, et al. Ionization of sputtered metals in high power pulsed magnetron sputtering[J]. J Vac Sci Technol, A, Vac Surf Films, 2005, 23(1): 18-23.[2] Kouznetsov V, Macák K, Schneider J M, et al. A novel pulsed magnetron sputter technique utilizing very high target power densities[J]. Surf Coat Technol, 1999, 122(2/3): 290-293.[3] Sarakinos K, Alami J, Konstantinidis S. High power pulsed magnetron sputtering: a review on scientific and engineering state of the art[J]. Surf Coat Technol, 2010, 204(11): 1 661-1 684.[4] Gudmundsson J T, Brenning N, Lundin D, et al. High power impulse magnetron sputtering discharge[J]. J Vac Sci Technol A, 2012, 30(3): 030 801-18.[5] Gudmundsson J T, Alami J, Helmersson U. Spatial and temporal behavior of the plasma parameters in a pulsed magnetron discharge[J]. Surf Coat Technol, 2002, 161(2/3): 249-256.[6] Bohlmark J, Gudmundsson J T, Alami J, et al. Spatial electron density distribution in a high-power pulsed magnetron discharge[J]. IEEE Trans Plasma Sci, 2005, 33(2): 346-347.[7] Ehiasarian A P, Münz W D, Hultman L, et al. High power pulsed magnetron sputtered CrNx films[J]. Surf Coat Technol, 2003, 163-164: 267-272.[8] Vǎsina P, Měsko M, Ganciu M, et al. Reduction of transient regime in fast preionized high-power pulsed-magnetron discharge[J]. Europhys Lett, 2005, 72(3): 390-395.[9] Alami J, Eklund P, Emmerlich J, et al. High-power impulse magnetron sputtering of Ti-Si-C thin films from a Ti3SiC2 compound target[J]. Thin Solid Films, 2006, 515(4): 1 731-1 736.[10] Reinhard C, Ehiasarian A P, Hovsepian P Eh. CrN/NbN superlattice structured coatings with enhanced corrosion resistance achieved by high power impulse magnetron sputtering interface pre-treatment[J].Thin Solid Films, 2007, 515(7/8): 3 685-3 692.[11] Anders A, Ni P, Rauch A. Drifting localization of ionization runaway: Unraveling the nature of anomalous transport in high power impulse magnetron sputtering[J]. J Appl Phys, 2012, 111(5): 053 304-13.[12] Anders A. Self-organization and self-limitation in high power impulse magnetron sputtering[J]. Appl Phys Lett, 2012, 100(22): 224 104-5.[13] Ehiasarian A P, Hecimovic A, Arcos T de los, et al. High power impulse magnetron sputtering discharges: instabilities and plasma self-organization[J]. Appl Phys Lett, 2012, 100(11): 114 101-4.[14] Kozyrev A V, Sochugov N S, Oskomov K V, et al. Optical studies of plasma inhomogeneities in a high-current pulsed magnetron discharge[J]. Plasma Phys Rep, 2011, 37(7): 621-627.[15] Gudmundsson J T, Alami J, Helmersson U. Evolution of the electron energy distribution and plasma parameters in a pulsed magnetron discharge[J]. Appl Phys Lett, 2001, 78 (22): 3 427-3 429.[16] Lin J, Moore J J, Sproul W D, et al. Ion energy and mass distributions of the plasma during modulated pulse power magnetron sputtering[J]. Surf Coat Technol, 2009, 203(24): 3 676-3 685.[17] Oks E M, Anders A. Boron-rich plasma by high power impulse magnetron sputtering of lanthanum hexaboride[J]. J Appl Phys, 2012, 112(8): 086 103-3.[18] Bowes M, Poolcharuansin P, Bradley J W. Negative ion energy distributions in reactive HiPIMS[J]. J Phys D: Applm Phys, 2013, 46(4): 045 204-9.[19] Rossnagel S M, Kaufman H R. Current voltage relations in magnetrons[J]. J Vac Sci Technol A, 1988, 6(2): 223-229.[20] Ehiasarian A P, New R, Münz W D, et al. Influence of high power densities on the composition of pulsed magnetron plasmas[J]. Vacuum, 2002, 65(2): 147-154.[21] Alami J, Sarakinos K, Mark G, et al. On the deposition rate in a high power pulsed magnetron sputtering discharge[J]. Appl Phys Lett, 2006, 89(15): 154 104-3.[22] Kouznetzov V. Method and apparatus for magnetically enhanced sputtering[P]. US Patent, 2001, US 6296742 B1.[23] Sproul W D, Christie D J, Carter D C, et al. Pulsed plasma for sputtering applications[J]. Surf Eng, 2004, 20(3):174-180.[24] Christie D J, Tomasel F, Sproul W D, et al. Power supply with arc handling for high peak power magnetron sputtering[J]. J Vac Sci Technol, A, Vac Surf Films, 2004, 22(4): 1 415-1 419.[25] Alami J, Gudmundsson J T, Bohlmark J, et al. Plasma dynamics in a highly ionized pulsed magnetron discharge[J]. Plasma Sources Sci Technol, 2005, 14(3): 525-531.[26] Anders A, Andersson J, Ehiasarian A. High power impulse magnetron sputtering: current-voltage-time characteristics indicate the onset of sustained self-sputtering[J]. J Appl Phys, 2007, 102(11): 113 303-11.[27] Yukimura K, Mieda R, Azuma K, et al. Voltage-current characteristics of a high-power pulsed sputtering (HPPS) glow discharge and plasma density estimation[J]. Nucl Instrum Methods Phys Res B, 2009, 267(8/9): 1 692-1 695.[28] Benzeggouta D, Hugon M C, Bretagne J, et al. Study of a HPPMS discharge in Ar/O2 mixture: I. Discharge characteristics with Ru cathode[J]. Plasma Sources Sci Technol, 2009, 18(4): 045 025-9. [29] Nakano T, Hirukawa N, Saeki S, et al. Effects of target voltage during pulse-off period in pulsed magnetron sputtering on afterglow plasma and deposited film structure[J]. Vacuum, 2013, 87: 109-113.[30] Bugaev S P, Sochugov N S. Production of large-area coatings on glasses and plastics[J]. Surf Coat Technol, 2000, 131 (1-3): 474-480.[31] Chistyakov R. Plasma source for semiconductor manufacturing industry e.g. plasma etching, has power supply to generate electric field ionizing volume of feed gas, and another supply generating another field super-ionizing initial plasma[P]. World Patent, 2004, WO 2004/095 497 A2.[32] Bohlmark J, Lattemann M, Gudmundsson J T, et al. The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J]. Thin Solid Films, 2006, 515(4): 1 522-1 526.[33] Konstantinidis S, Dauchot J P, Ganciu M, et al. Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges[J]. J Appl Phys, 2006, 99(1): 013 307-5.[34] Bohlmark J, Alami J, Christou C, et al. Ionization of sputtered metals in high power pulsed magnetron sputtering[J]. J Vac Sci Technol, A, Vac Surf Films, 2005, 23(1): 18-22. [35] Erkens G, Cremer R, Hamoudi T, et al. Properties and performance of high aluminum containing (Ti,Al)N based supernitride coatings in innovative cutting applications[J]. Surf Coat Technol, 2004, 177-178: 727-734.[36] Lin J, Moore J J, Sproul W D, et al. Ion energy and mass distributions of the plasma during modulated pulse power magnetron sputtering[J]. Surf Coat Technol, 2009, 203(24): 3 676-3 685.[37] Schönjahn C, Ehiasarian A P, Lewis D B, et al. Optimization of in situ substrate surface treatment in a cathodic arc plasma: a study by TEM and plasma diagnostics[J]. J Vac Sci Technol A, 2001, 19(4): 1 415-1 420. [38] Ehiasariana A P, Wen J G, Petrov I. Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion[J]. J Appl Phys, 2007, 101(5): 054 301-10.[39] Gudmundsson J T. Ionization mechanism in the high power impulse magnetron sputtering (HiPIMS) discharge[J]. J Phys, 2008, 100: 082 013-4. [40] Bohlmark J, Gudmundsson J T, Alami J, et al. Spatial electron density distribution in a high-power pulsed magnetron discharge[J]. IEEE Trans Plasma Sci, 2005, 33(2): 346-347. [41] Stranak V, Herrendorf A P, Drache S, et al. Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma[J]. J Appl Phys, 2012, 112(9): 093 305-9.[42] Druyvesteyn M J. The low arc volt[J].ZPhys, 1930,64 (11/12): 781-798. [43] Lieberman M A, Lichtenberg A J. Principles of Plasma Discharges and Materials Processing[M]. 2nd ed, Wiley, New York. 2005:191.[44] Hecimovic A, Arcos T de los, Schulz-von der Gathen V, et al. Temporal evolution of the radial plasma emissivity profile in HIPIMS plasma discharges[J]. Plasma Sources Sci Technol, 2012, 21(3): 035 017-9.[45] Aiempanakit M, Aijaz A, Lundin D, et al. Understanding the discharge current behavior in reactive high power impulse magnetron sputtering of oxides[J]. J Appl Phys, 2013,113(13): 133 302-8.[46] Hecimovic A, Ehiasarian A P. Time evolution of ion energies in HIPIMS of chromium plasma discharge[J]. J Phys D: Appl Phys, 2009, 42(13): 135 209-9.[47] Lundin D, Stahl M, Kersten H, et al. Energy flux measurements in high power impulse magnetron sputtering[J]. J Phys D: Appl Phys, 2009, 42(18): 185 202-7.[48] Rohde D, Berndt J, Deutsch H, et al. Investigations on the energy influx at plasma processes by means of a simple thermal probe[J]. Thin Solid Films, 2000, 377-378: 585-591.[49] Alami J, Persson P O Å, Music D, et al. Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces[J]. J Vac Sci Technol A, 2005, 23(2): 278-280.[50] Bobzin K, Bagcivan N, Immich P, et al. Mechanical properties and oxidation behaviour of (Al,Cr)N and (Al,Cr,Si)N coatings for cutting tools deposited by HPPMS[J]. Thin Solid Films, 2008, 517(3): 1 251-1 256.[51] Sproul W D, Christie D J, Carter D C, et al. Pulsed plasmas foil sputtering applications[J]. Surf Eng, 2004, 20(3): 174-176. [52] Vl ek J, Pajdarová A D, Musil J. Pulsed dc magnetron discharges and their utilization in plasma surface engineering[J]. Contrib Plasma Phys, 2004, 44(5/6): 426-436.[53] Christie D J. Target material pathways model for high power pulsed magnetron sputtering[J]. J Vac Sci Technol, A, Vac Surf Films, 2005, 23(2): 330-335.[54] Konstantinidis S, Dauchot J P, Ganciu M, et al. Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges[J]. J Appl Phys, 2006, 99(1): 013 307-5.[55] Alami J, Eklund P, Andersson J M, et al. Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering[J]. Thin Solid Films, 2007, 515(7/8): 3 434-3 438.[56] Hosokawa N, Tsukada T, Kitahara H. Preparation and properties of carbon-films with magnetron sputtering[R]. Proceedings of the 8th International Vacuum Congress, 1980, Cannes, France, 1: 115-116.[57] Bugaev S P, Koval N N, Sochugov N S, et al. Investigation of a high-current pulsed magnetron discharge initiated in the low-pressure diffuse arc plasma[C]//Proceedings of the 17th International Symposium on Discharges and Electrical Insulation in Vacuum, 1996, Berkeley, CA, USA, 1/2:1 074-1 076. [58] Konstantinidis S, Dauchot J P, Ganciu M, et al. Transport of ionized metal atoms in high-power pulsed magnetron discharges assisted by inductively coupled plasma[J]. Appl Phys Lett, 2006, 88(2): 021 501-3.[59] Bohlmark J, Östbye M, Lattemann M, et al. Guiding the deposition flux in an ionized magnetron discharge[J]. Thin Solid Films, 2006, 515(4): 1 928-1 931.[60] Alami J, Sarakinos K, Uslu F, et al. On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering[J]. J Phys D: Appl Phys, 2009, 42(1): 015 304-7.[61] Bagcivan N, Bobzin K, Theiβ S. (Cr1-xAlx)N: a comparison of direct current, middle frequency pulsed and high power pulsed magnetron sputtering for injection molding components[J]. Thin Solid Films, 2013, 528: 180-186.[62] Partridge J G, Mayes E L H, McDougall N L, et al. Characterization and device applications of ZnO films deposited by high power impulse magnetron sputtering (HiPIMS)[J]. J Phys D: Appl Phys, 2013, 46(16): 165 105-5. |