[1] Barzilai J, Borwein J M. Two-point step size gradient methods[J]. IMA Journal of Numerical Analysis, 1988, 8(1):141-148.
[2] Zhou B, Gao L, Dai Y H. Gradient methods with adaptive step-sizes[J]. Computational Optimization and Applications, 2006, 35(1):69-86.
[3] Raydan M. On the Barzilai and Borwein choice of steplength for the gradient method[J]. IMA Journal of Numerical Analysis, 1993, 13(3):321-326.
[4] Dai Y H, Liao L Z. R-linear convergence of the Barzilai and Borwein gradient method[J]. IMA Journal of Numerical Analysis, 2002, 22(1):1-10.
[5] Dai Y H, Fletcher R. New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds[J]. Mathematical Programming, 2006, 106(3):403-421.
[6] Raydan M. The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem[J]. SIAM Journal on Optimization, 1997, 7(1):26-33.
[7] Yuan Y. Gradient methods for large scale convex quadratic functions[M]//Optimization and Regularization for Computational Inverse Problems and Applications. Berlin:Springer Heidelberg, 2010:141-155.
[8] Yuan Y. A new stepsize for the steepest descent method[J]. Journal of Computational Mathematics, 2006:149-156.
[9] Dai Y, Yuan Y X. Analysis of monotone gradient methods[J]. Journal of Industrial and Management Optimization, 2005, 1(2):181.
[10] Dai Y H, Fletcher R. Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming[J]. Numerische Mathematik, 2005, 100(1):21-47.
[11] Hager W W, Zhang H. A new active set algorithm for box constrained optimization[J]. SIAM Journal on Optimization, 2006, 17(2):526-557.
[12] Zhou B, Gao L, Dai Y. Monotone projected gradient methods for largescale box-constrained quadratic programming[J]. Science in China Series A, 2006, 49(5):688-702.
[13] De Asmundis R, di Serafino D, Riccio F, et al. On spectral properties of steepest descent methods[J]. IMA Journal of Numerical Analysis, 2013:drs056.
[14] Zanni L, Serafini T, Zanghirati G. Parallel software for training large scale support vector machines on multiprocessor systems[J]. Journal of Machine Learning Research, 2006, 7(7):1467-1492.
[15] Serafini T, Zanghirati G, Zanni L. Parallel decomposition approaches for training support vector machines[J]. Advances in Parallel Computing, 2004, 13:259-266.
[16] Zanghirati G, Zanni L. A parallel solver for large quadratic programs in training support vector machines[J]. Parallel computing, 2003, 29(4):535-551.
[17] Grippo L, Lampariello F, Lucidi S. A nonmonotone line search technique for Newton's method[J]. SIAM Journal on Numerical Analysis, 1986, 23(4):707-716. |