[1] Ackermann L, Vicente R. Ruthenium-catalyzed direct arylations through C-H bond cleavages[J]. Topics in Current Chemistry, 2010,292:211-229. DOI:10.1007/128_2009_9. [2] Bouffard J, Itami K. Rhodium-catalyzed C-H bond arylation of arenes[J]. Topics in Current Chemistry, 2010,292:231-280. DOI:10.1007/128_2009_12. [3] Tong X F, Zhang Z G, Zhang X M. Rhodium-catalyzed cycloisomerization of 1,6-enynes with an intramolecular halogen shift[J]. Journal of Graduate University of Chinese Academy of Sciences, 2006, 23(3):416-426. DOI:10.7523/j.issn.2095-6134.2006.3.022. [4] Tao Y, Dang Y F, Wang Z X. Studies on Rh (Ⅲ)-catalyzed[5+2]/[3+2] cycloadditions of 2-hydroxystyrenes with alkynes[J]. Journal of University of Chinese Academy of Sciences, 2016, 33(1):57-64(in Chinese). DOI:10.7523/j.issn.2095-6134.2016.01.009. [5] Beck E M, Gaunt M J. Pd-catalyzed C-H bond functionalization on the indole and pyrrole nucleus[J]. Topics in Current Chemistry,2010,292:85-121. DOI:10.1007/128_2009_15. [6] Daugulis O. Palladium and copper catalysis in regioselective, intermolecular coupling of C-H and C-Hal bonds[J]. Topics in Current Chemistry, 2010,292:57-84. DOI:10.1007/128_2009_10. [7] Sun C L, Li B J, Shi Z J. Direct C-H transformation via iron catalysis[J]. Chemical Reviews, 2011, 111(3):1293-1314. DOI:10.1021/cr100198w. [8] Aihara Y, Chatani N. Nickel-catalyzed direct alkylation of C-H bonds in benzamides and acrylamides with functionalized alkyl halides via bidentate-chelation assistance[J]. Journal of the American Chemical Society, 2013, 135(14):5308-5311. DOI:10.1021/ja401344e. [9] Muto K, Yamaguchi J, Itami K. Nickel-catalyzed C-H/C-O coupling of azoles with phenol derivatives[J]. Journal of the American Chemical Society, 2012, 134(1):169-172. DOI:10.1021/ja210249h. [10] Nakao Y, Yamada Y, Kashihara N, et al. Selective C-4 alkylation of pyridine by nickel/Lewis acid catalysis[J]. Journal of the American Chemical Society, 2010, 132(39):13666-13668. DOI:10.1021/ja106514b. [11] Daugulis O, Do H Q, Shabashov D. Palladium-and copper-catalyzed arylation of carbon-hydrogen bonds[J]. Accounts of Chemical Research, 2009, 42(8):1074-1086. DOI:10.1021/ar9000058. [12] Mkhalid I A I, Barnard J H, Marder T B, et al. C-H activation for the construction of C-B bonds[J]. Chemical Reviews, 2010, 110(2):890-931. DOI:10.1021/cr900206p. [13] Dewanji A, Krach P E, Rueping M. The dual role of benzophenone in visible-light/nickel photoredox-catalyzed C-H arylations:hydrogen-atom transfer and energy transfer[J]. Angewandte Chemie International Edition, 2019, 131(11):3604-3608. DOI:10.1002/anie.201901327. [14] Lyons T W, Sanford M S. Palladium-catalyzed ligand-directed C-H functionalization reactions[J]. Chemical Reviews, 2010, 110(2):1147-1169.DOI:10.1021/cr900184e. [15] Graetzel M. Artificial photosynthesis:water cleavageinto hydrogen and oxygen by visible light[J]. Accounts of Chemical Research, 1981, 14(12):376-384. DOI:10.1021/ar00072a003. [16] Meyer T J. Chemical approaches to artificial photosynthesis[J]. Accounts of Chemical Research, 1989, 22(5):163-170. DOI:10.1021/ar00161a001. [17] Takeda H, Ishitani O. Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies[J]. Coordination Chemistry Reviews, 2010, 254(3/4):346-354. DOI:10.1016/j.ccr.2009.09.030. [18] Kalyanasundaram K, Grätzel M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices[J]. Coordination Chemistry Reviews, 1998, 177(1):347-414. DOI:10.1016/S0010-8545(98)00189-1. [19] Shaw M H, Twilton J, MacMillan D W C. Photoredox catalysis in organic chemistry[J]. The Journal of Organic Chemistry, 2016, 81(16):6898-6926. DOI:10.1021/acs.joc.6b01449. [20] Liu L Q, Yang J K. Syntheses of 1,3-bis (aryl butadienyl ketone) propane derivatives and their visible light photocatalytic[4+4] and[2+2] cycloadditions[J]. Journal of Graduate University of Chinese Academy of Sciences, 2012,29(2):180-191. DOI:10.7523/j.issn.2095-6134.2012.2.006. [21] Osawa M, Nagai H, Akita M. Photo-activation of Pd-catalyzed Sonogashira coupling using a Ru/bipyridine complex as energy transfer agent[J]. Dalton Transactions, 2007(8):827-829. DOI:10.1039/b618007h. [22] Kalyani D, McMurtrey K B, Neufeldt S R, et al. Room-temperature C-H arylation:merger of Pd-catalyzed C-H functionalization and visible-light photocatalysis[J]. Journal of the American Chemical Society, 2011, 133(46):18566-18569. DOI:10.1021/ja208068w. [23] Neufeldt S R, Sanford M S. Combining transition metal catalysis with radical chemistry:dramatic acceleration of palladium-catalyzed C-H arylation with diaryliodonium salts[J]. Advanced Synthesis&Catalysis, 2012, 354(18):3517-3522. DOI:10.1002/adsc.201200738. [24] Xuan J, Zeng T T, Feng Z J, et al. Redox-neutral α-allylation of amines by combining palladium catalysis and visible-light photoredox catalysis[J]. Angewandte Chemie International Edition, 2015, 54(5):1625-1628. DOI:10.1002/anie.201409999. [25] Czyz M L, Lupton D W, Polyzos A. Auxiliary-directed C (sp3)-H arylation by synergistic photoredox and palladium catalysis[J]. Chemistry:A European Journal, 2017, 23(58):14450-14453. DOI:10.1002/chem.201704045. [26] Gandeepan P, Muller T, Zell D, et al. 3d transition metals for C-H activation[J]. Chemical Reviews, 2019, 119(4):2192-2452. DOI:10.1021/acs.chemrev.8b00507. [27] Tasker S Z, Standley E A, Jamison T F. Recent advances in homogeneous nickel catalysis[J]. Nature, 2014, 509(7500):299-309. DOI:10.1038/nature13274. [28] Aihara Y, Wuelbern J, Chatani N. The nickel (Ⅱ)-catalyzed direct benzylation, allylation, alkylation, and methylation of C-H bonds in aromatic amides containing an 8-aminoquinoline moiety as the directing group[J]. Bulletin of the Chemical Society of Japan, 2015, 88(3):438-446. DOI:10.1246/bcsj.20140387. [29] Castro L C M, Chatani N. Nickel catalysts/N,N'-bidentate directing groups:an excellent partnership in directed C-H activation reactions[J]. Chemistry Letters, 2015, 44(4):410-421. DOI:10.1246/cl.150024. [30] Cai X H, Xie B. Recent advances on nickel-catalyzed C-H bonds functionalized reactions[J]. Arkivoc, 2015(ⅰ):184-211. DOI:10.3998/ark.5550190.p008.915. [31] Yamaguchi J, Muto K, Itami K. Recent progress in nickel-catalyzed biaryl coupling[J]. European Journal of Organic Chemistry, 2013, 2013(1):19-30. DOI:10.1002/ejoc.201200914. [32] Le C, Liang Y F, Evans R W, et al. Selective sp3 C-H alkylation via polarity-match-based cross-coupling[J]. Nature, 2017, 547(7661):79-83. DOI:10.1038/nature22813. [33] Shaw M H, Shurtleff V W, Terrett J A, et al. Native functionality in triple catalytic cross-coupling:sp3 C-H bonds as latent nucleophiles[J]. Science, 2016, 352(6291):1304-1308. DOI:10.1126/science.aaf6635. [34] Twilton J, Christensen M, DiRocco D A, et al. Selective hydrogen atom abstraction through induced bond polarization:direct α-arylation of alcohols through photoredox, HAT, and nickel catalysis[J]. Angewandte Chemie International Edition, 2018, 57(19):5369-5373. DOI:10.1002/anie.201800749. [35] Zhang L M, Si X J, Yang Y Y, et al. The combination of benzaldehyde and nickel-catalyzed photoredox C (sp3)-H alkylation/arylation[J]. Angewandte Chemie International Edition, 2019, 58(6):1823-1827. DOI:10.1002/anie.201810526. [36] Fan X Z, Rong J W, Wu H L, et al. Eosin Y as a direct hydrogen-atom transfer photocatalyst for the functionalization of C-H bonds[J]. Angewandte Chemie International Edition, 2018, 57(28):8514-8518. DOI:10.1002/anie.201803220. [37] Arceo E, Montroni E, Melchiorre P. Photo-organocatalysis of atom-transfer radical additions to alkenes[J]. Angewandte Chemie International Edition, 2014, 53(45):12064-12068. DOI:10.1002/anie.201406450. [38] Buonaugurio A, Zhang X X, Stokes S T, et al. The photoelectron spectrum of the benzaldehyde anion[J]. International Journal of Mass Spectrometry, 2015, 377:278-280. DOI:10.1016/j.ijms.2014.05.006. [39] Shen Y Y, Gu Y T, Martin R. sp3 C-H arylation and alkylation enabled by the synergy of triplet excited ketones and nickel catalysts[J]. Journal of the American Chemical Society, 2018, 140(38):12200-12209. DOI:10.1021/jacs.8b07405. [40] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision D.01[CP]. Gaussian Inc, Wallingford CT, 2013. [41] Lee C, Yang W T, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, Condensed Matter, 1988, 37(2):785-789. DOI:10.1103/physrevb.37.785. [42] Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange[J]. The Journal of Chemical Physics, 1993, 98(7):5648-5652. DOI:10.1063/1.464913. [43] Dolg M, Wedig U, Stoll H, et al. Energy-adjusted ab initio pseudopotentials for the first row transition elements[J]. The Journal of Chemical Physics, 1987, 86(2):866-872. DOI:10.1063/1.452288. [44] Hariharan P C, Pople J A. The influence of polarization functions on molecular orbital hydrogenation energies[J]. Theoretica Chimica Acta, 1973, 28(3):213-222. DOI:10.1007/BF00533485. [45] Fukui K. The path of chemical reactions-the IRC approach[J]. Accounts of Chemical Research, 1981, 14(12):363-368. DOI:10.1021/ar00072a001. [46] Hratchian H P, Schlegel H B. Accurate reaction paths using a Hessian based predictor-corrector integrator[J]. The Journal of Chemical Physics, 2004, 120(21):9918-9924. DOI:10.1063/1.1724823. [47] Hratchian H P, Schlegel H B. Using hessian updating to increase the efficiency of a hessian based predictor-corrector reaction path following method[J]. Journal of Chemical Theory and Computation, 2005, 1(1):61-69. DOI:10.1021/ct0499783. [48] Frisch M J, Pople J A, Binkley J S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets[J]. The Journal of Chemical Physics, 1984, 80(7):3265-3269. DOI:10.1063/1.447079. [49] Zhao Y, Schultz N E, Truhlar D G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions[J]. Journal of Chemical Theory and Computation, 2006, 2(2):364-382. DOI:10.1021/ct0502763. [50] Marenich A V, Cramer C J, Truhlar D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. The Journal of Physical Chemistry B, 2009, 113(18):6378-6396. DOI:10.1021/jp810292n. [51] Marenich A V, Cramer C J, Truhlar D G. Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies[J]. The Journal of Physical Chemistry B, 2009, 113(14):4538-4543. DOI:10.1021/jp809094y. [52] Fernández-Alvarez V M, Nappi M, Melchiorre P, et al. Computational study with DFT and kinetic models on the mechanism of photoinitiated aromatic perfluoroalkylations[J]. Organic Letters, 2015, 17(11):2676-2679. DOI:10.1021/acs.orglett.5b01069. [53] Fernández-Alvarez V M, Maseras F. Computational characterization of the mechanism for the light-driven catalytic trichloromethylation of acylpyridines[J]. Organic&Biomolecular Chemistry, 2017, 15(40):8641-8647.DOI:10.1039/c7ob01826f. [54] Fernández-Alvarez V M, Ho S K Y, Britovsek G J P, et al. A DFT-based mechanistic proposal for the light-driven insertion of dioxygen into Pt (Ⅱ)-C bonds[J]. Chemical Science, 2018, 9(22):5039-5046. DOI:10.1039/c8sc01161c. |