[1] Chiang M, Zhang T. Fog and IoT: an overview of research opportunities[J]. IEEE Internet of Things Journal, 2016, 3(6):854-864.DOI:10.1109/JIOT.2016.2584538. [2] You C S, Huang K B, Chae H, et al. Energy-efficient resource allocation for mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2017, 16(3):1397-1411.DOI:10.1109/TWC.2016.2633522. [3] Dinh T Q, Tang J H, La Q D, et al. Offloading in mobile edge computing: task allocation and computational frequency scaling[J]. IEEE Transactions on Communications, 2017, 65(8):3571-3584.DOI:10.1109/TCOMM.2017.2699660. [4] Yang Y, Wang K L, Zhang G W, et al. MEETS: maximal energy efficient task scheduling in homogeneous fog networks[J]. IEEE Internet of Things Journal, 2018, 5(5): 4076-4087.DOI:10.1109/JIOT.2018.2846644. [5] Mao Y Y, Zhang J, Song S H, et al. Stochastic joint radio and computational resource management for multi-user mobile-edge computing systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(9):5994-6009.DOI:10.1109/TWC.2017.2717986. [6] Yang Y, Zhao S, Zhang W X, et al. DEBTS: delay energy balanced task scheduling in homogeneous fog networks[J]. IEEE Internet of Things Journal, 2018, 5(3): 2094-2106.DOI:10.1109/JIOT.2018.2823000. [7] Pu L J, Chen X, Xu J D, et al. D2D fogging: an energy-efficient and incentive-aware task offloading framework via network-assisted D2D collaboration[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3887-3901.DOI:10.1109/JSAC.2016.2624118. [8] Zhu Z W, Liu T, Yang Y, et al. BLOT: bandit learning-based offloading of tasks in fog-enabled networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2019, 30(12): 2636-2649.DOI:10.1109/TPDS.2019.2927978. [9] Yang F Q, Zhu Z W, Zhao S S, et al. Optimal task offloading in fog-enabled networks via index policies[C]//2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). November 26-29, 2018, Anaheim, CA, USA. IEEE, 2018: 688-692.DOI:10.1109/GlobalSIP.2018.8646376. [10] Mozaffari M, Saad W, Bennis M, et al. Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage[J]. IEEE Communications Letters, 2016, 20(8):1647-1650.DOI:10.1109/LCOMM.2016.2578312. [11] Lyu J B, Zeng Y, Zhang R, et al. Placement optimization of UAV-mounted mobile base stations[J]. IEEE Communications Letters, 2017, 21(3):604-607.DOI:10.1109/LCOMM.2016.2633248. [12] Alzenad M, El-Keyi A, Lagum F, et al. 3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage[J]. IEEE Wireless Communications Letters, 2017, 6(4): 434-437.DOI:10.1109/LWC.2017.2700840. [13] Maiti P, Shukla J, Sahoo B, et al. QoS-aware fog nodes placement[C]//2018 4th International Conference on Recent Advances in Information Technology (RAIT). March 15-17, 2018, Dhanbad, India. IEEE, 2018: 1-6.DOI:10.1109/RAIT.2018.8389043. [14] Bonomi F, Milito R, Zhu J, et al. Fog computing and its role in the internet of things[C]//MCC′12: Proceedings of the first edition of the MCC workshop on Mobile cloud computing. 2012: 13-16.DOI:10.1145/2342509.2342513. [15] Zhang H Q, Xiao Y, Bu S R, et al. Computing resource allocation in three-tier IoT fog networks: a joint optimization approach combining Stackelberg game and matching[J]. IEEE Internet of Things Journal, 2017, 4(5): 1204-1215.DOI:10.1109/JIOT.2017.2688925. [16] Li K Q. A game theoretic approach to computation offloading strategy optimization for non-cooperative users in mobile edge computing[J]. IEEE Transactions on Sustainable Computing, 2018. DOI: 10.1109/TSUSC.2018.2868655. [17] Kumar K, Lu Y H. Cloud computing for mobile users: Can offloading computation save energy?[J]. Computer, 2010, 43(4): 51-56.DOI:10.1109/mc.2010.98. [18] Jain A K, Murty M N, Flynn P J. Data clustering: a review[J]. ACM Computing Surveys, 1999, 31(3): 264-323.DOI:10.1145/331499.331504. [19] Welzl E. Smallest enclosing disks (balls and ellipsoids)[M]// Maurer H. New results and new trends in computer science. Springer/Berlin Heidelberg, Springer-Verlag, 1991: 359-370.DOI:10.1007/bfb0038202. [20] Ghosh S, Dubey S K. Comparative analysis of k-means and fuzzy c-means algorithms[J]. International Journal of Advanced Computer Science and Applications, 2013, 4(4): 35-39.DOI:10.14569/ijacsa.2013.040406. |