[1] 马文红, 韩梅, 林鑫, 等.内蒙古温带草地植被的碳储量[J].干旱区资源与环境, 2006, 20(3):192-195. [2] 焦翠翠, 于贵瑞, 陈智, 等.基于遥感反演的1982-2015年中国北方温带和青藏高原高寒草地地上生物量空间数据集[J].中国科学数据, 2019, 4(1):35-49. [3] Mao D H, Wang Z M, Li L, et al. Spatiotemporal dynamics of grassland aboveground net primary productivity and its association with climatic pattern and changes in Northern China[J]. Ecological Indicators, 2014, 41:40-48. [4] Toan T L, Quegan S, Davidson M W J, et al. The BIOMASS mission:mapping global forest biomass to better understand the terrestrial carbon cycle[J]. Remote Sensing of Environment, 2011, 115(11):2850-2860. [5] 于惠, 吴玉锋, 金毅, 等.基于MODIS SWIR数据的干旱区草地地上生物量反演及时空变化研究[J].遥感技术与应用, 2017, 32(3):524-530. [6] 龙鑫, 李静, 柳钦火.植被指数合成算法综述[J].遥感技术与应用, 2013, 28(6):969-977. [7] Jin Y X, Yang X C, Qiu J J, et al. Remote sensing-based biomass estimation and its spatio-temporal variations in temperate grassland, Northern China[J]. Remote Sensing, 2014, 6(2):1496-1513. [8] 孟宝平, 陈思宇, 崔霞, 等.基于多源遥感数据的高寒草地生物量反演模型精度:以夏河县桑科草原试验区为例[J].草业科学, 2015, 32(11):1730-1739. [9] Ren H, Feng G. Are soil-adjusted vegetation indices better than soil-unadjusted vegetation indices for above-ground green biomass estimation in arid and semi-arid grasslands?[J]. Grass and Forage Science, 2015, 70(4):611-619. [10] Yan F, Wu B, Wang Y J. Estimating spatiotemporal patterns of aboveground biomass using Landsat TM and MODIS images in the Mu Us Sandy Land, China[J]. Agricultural and Forest Meteorology, 2015, 200:119-128. [11] 张旭琛, 朱华忠, 钟华平, 等.新疆伊犁地区草地植被地上生物量遥感反演[J].草业学报, 2015, 24(6):25-34. [12] Gao T, Xu B, Yang X C, et al. Using MODIS time series data to estimate aboveground biomass and its spatiotemporal variation in Inner Mongolia's grassland between 2001 and 2011[J]. International Journal of Remote Sensing, 2013, 34(21):7796-7810. [13] Meng B P, Ge J, Liang T G, et al. Evaluation of remote sensing inversion error for the above-ground biomass of alpine meadow grassland based on multi-source satellite data[J]. Remote Sensing, 2017, 9(4):372. [14] Ali I, Cawkwell F, Dwyer E, et al. Satellite remote sensing of grasslands:from observation to management[J]. Journal of Plant Ecology, 2016, 9(6):649-671. [15] 曾纳, 任小丽, 何洪林, 等.基于神经网络的三江源区草地地上生物量估算[J].环境科学研究, 2017, 30(1):59-66. [16] Fassnacht F E, Hartig F, Latifi H, et al. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass[J]. Remote Sensing of Environment, 2014, 154:102-114. [17] Gleason C J, Im J. Forest biomass estimation from airborne LiDAR data using machine learning approaches[J]. Remote Sensing of Environment, 2012, 125(5):80-91. [18] Ramoelo A, Cho M A, Mathieu R, et al. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 43:43-54. [19] Zeng N, Ren X L, He H L, et al. Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm[J]. Ecological Indicators, 2019, 102:479-487. [20] Wang Y Y, Wu G L, Deng L, et al. Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm[J]. Scientific Reports, 2017, 7:6940. [21] 黄露, 周伟, 李佳慧, 等.内蒙古不同类型草地NPP时空动态特征及其气候影响因素分析[J]. 草原与草坪, 2019, 39(2):1-9. [22] 李舒婷, 周艺, 王世新, 等.2001-2015年内蒙古NDVI时空变化及其对降水和气温的响应[J].中国科学院大学学报, 2019, 36(1):48-55. [23] 刘志红, Li L T, Mcvicar T R, 等. 专用气候数据空间插值软件ANUSPLIN及其应用[J].气象, 2008, 34(2):92-100. [24] Breiman L. Random forest[J]. Machine Learning, 2001, 45:5-32. [25] Jiang W G, Yuan L H, Wang W J, et al. Spatio-temporal analysis of vegetation variation in the Yellow River Basin[J]. Ecological Indicators, 2015, 51:117-126. [26] 刘宪锋, 潘耀忠, 朱秀芳, 等.2000-2014年秦巴山区植被覆盖时空变化特征及其归因[J].地理学报, 2015, 70(5):705-716. [27] 李卓, 孙然好, 张继超, 等.京津冀城市群地区植被覆盖动态变化时空分析[J].生态学报, 2017, 37(22):7418-7426. [28] Kang M Y, Dai C, Ji W Y, et al. Biomass and its allocation in relation to temperature, precipitation, and soil nutrients in Inner Mongolia grasslands, China[J]. Plos One, 2013, 8(7):e69561. [29] Piao S L, Fang J Y, Zhou L M, et al. Changes in biomass carbon stocks in China's grasslands between 1982 and 1999[J]. Global Biogeochemical Cycles, 2007, 21:GB2002. [30] John R, Chen J Q, Giannico V, et al. Grassland canopy cover and aboveground biomass in Mongolia and Inner Mongolia:spatiotemporal estimates and controlling factors[J]. Remote Sensing of Environment, 2018, 213:34-48. [31] 张雷, 王琳琳, 张旭东, 等.随机森林算法基本思想及其在生态学中的应用:以云南松分布模拟为例[J]. 生态学报, 2014, 34(3):650-659. [32] Gao T, Yang X C, Jin Y X, et al. Spatio-temporal variation in vegetation biomass and its relationships with climate factors in the Xilingol grasslands, Northern China[J]. Plos One, 2013, 8(12):e83824. [33] Tucker C J, Slayback D A, Pinzon J E, et al. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999[J]. International Journal of Biometeorology, 2001, 45(4):184-190. [34] 李晓光, 刘华民, 王立新, 等.鄂尔多斯高原植被覆盖变化及其与气候和人类活动的关系[J]. 中国农业气象, 2014, 35(4):470-476. |