[1] Dembczyński K, Kotłowski W, Słowiński R. Ordinal classification with decision rules[C]//International Workshop on Mining Complex Data. Springer, Berlin, Heidelberg, 2007: 169-181.DOI:10.1007/978-3-540-68416-9_14. [2] Cardoso J S, Costa J F. Learning to classify ordinal data: the data replication method[J]. Journal of Machine Learning Research, 2007, 8(Jul): 1393-1429. [3] Chang K Y, Chen C S, Hung Y P. A ranking approach for human ages estimation based on face images[C]//2010 20th International Conference on Pattern Recognition. August 23-26,2010,Istanbul, Turkey.IEEE, 2010: 3396-3399.DOI:10.1109/ICPR.2010.829. [4] Frank E, Hall M. A simple approach to ordinal classification[C]//European Conference on Machine Learning. Springer, Berlin, Heidelberg, 2001: 145-156.DOI:10.1007/3-540-44795-4_13. [5] Shashua A, Levin A. Ranking with large margin principle: two approaches[C]//Advances in Neural Information Processing Systems. 2003: 961-968. [6] Wang H D, Shi Y, Niu L F, et al. Nonparallel support vector ordinal regression[J]. IEEE Transactions on Cybernetics, 2017, 47(10): 3306-3317.DOI:10.1109/TCYB.2017.2682852. [7] Hung H, Jou Z Y, Huang S Y. Robust mislabel logistic regression without modeling mislabel probabilities[J]. Biometrics, 2018, 74(1): 145-154.DOI:10.1111/biom.12726. [8] Tian Y, Sun M, Deng Z B, et al. A new fuzzy set and nonkernel SVM approach for mislabeled binary classification with applications[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(6): 1536-1545.DOI:10.1109/TFUZZ.2017.2752138. [9] Qian W M, Li Y M. Parameter estimation in linear regression models for longitudinal contaminated data[J]. Applied Mathematics: A Journal of Chinese Universities, 2005, 20(1): 64-74.DOI:10.1007/s11766-005-0038-0. [10] Komori O, Eguchi S, Ikeda S, et al. An asymmetric logistic regression model for ecological data[J]. Methods in Ecology and Evolution, 2016, 7(2): 249-260.DOI:10.1111/2041-210X.12473. [11] Cox C. Location-scale cumulative odds models for ordinal data: a generalized non-linear model approach[J]. Statistics in Medicine, 1995, 14(11): 1191-1203.DOI:10.1002/sim.4780141105. [12] Fujisawa H, Eguchi S. Robust parameter estimation with a small bias against heavy contamination[J]. Journal of Multivariate Analysis, 2008, 99(9): 2053-2081.DOI:10.1016/j.jmva.2008.02.004. [13] Mollah M N H, Eguchi S, Minami M. Robust prewhitening for ICA by minimizing β-divergence and its application to FastICA[J]. Neural Processing Letters, 2007, 25(2): 91-110.DOI:10.1007/s11063-006-9023-8. [14] Smith S A, O’Meara B C. treePL: divergence time estimation using penalized likelihood for large phylogenies[J]. Bioinformatics, 2012, 28(20): 2689-2690.DOI:10.1093/bioinformatics/bts492. [15] Zang Y G, Zhao Q, Zhang Q Z, et al. Inferring gene regulatory relationships with a high-dimensional robust approach[J]. Genetic Epidemiology, 2017, 41(5): 437-454.DOI:10.1002/gepi.22047. [16] Kakita T, Hiraoka T, Oshika T. Influence of overnight orthokeratology on axial elongation in childhood myopia[J]. Investigative Ophthalmology & Visual Science, 2011, 52(5): 2170-2174.DOI:10.1167/iovs.10-5485. [17] Hoyt C S, Stone R D, Fromer C, et al. Monocular axial myopia associated with neonatal eyelid closure in human infants[J]. American Journal of Ophthalmology, 1981, 91(2): 197-200.DOI:10.1016/0002-9394(81)90173-2. [18] Li S M, Liu L R, Li S Y, et al. Design, methodology and baseline data of a school-based cohort study in Central China: the Anyang childhood eye study[J]. Ophthalmic Epidemiology, 2013, 20(6): 348-359.DOI:10.3109/09286586.2013.842596. [19] Chang K Y, Chen C S, Hung Y P. Ordinal hyperplanes ranker with cost sensitivities for age estimation[C]//CVPR 2011. June 20-25, 2011, Colorado Springs, CO,USA. IEEE, 2011: 585-592.DOI:10.1109/CVPR.2011.5995437. |