[1] Keeney R L, Raiffa H, Meyer R F. Decisions with multiple objectives:preferences and value trade-offs[M]. Cambridge, UK:Cambridge university press, 1993. [2] Roy B. Decision aiding:major actors and the role of models[M]//Multicriteria methodoly for decision making. Boston, USA:Springer, 1996:237-267. [3] Brans J P, Mareschal B. Promethee methods[M]//Multiple criteria decision analysis. New York, USA:Springer, 2005:163-186. [4] Xu X Z. The SIR methods:a superiority and inferiority ranking method for multiple criteria decision making[J]. European Journal of Operational Research, 2001, 131(3):587-602. DOI:10.1016/S0377-2217(00)00101-6. [5] Lahdelma R, Hokkanen J, Salminen P. SMAA-stochastic multiobjective acceptability analysis[J]. European Journal of Operational Research, 1998, 106(1):137-143. DOI:10.1016/S0377-2217(97)00163-X. [6] Lahdelma R, Salminen P. SMAA-2:stochastic multicriteria acceptability analysis for group decision making[J]. Operations Research, 2001, 49(3):444-454. DOI:10.1287/opre.49.3.444.11220. [7] Lahdelma R, Miettinen K, Salminen P. Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA)[J]. European Journal of Operational Research, 2003, 147(1):117-127. DOI:10.1016/S0377-2217(02)00267-9. [8] Yu W. ELECTRE TRI:aspects mthodologiques et manuel dutilisation[D]. Paris, France:Universit de Paris-Dauphine, 1992. [9] Tervonen T, Lahdelma R, Dias J A, et al. SMAA-TRI:a parameter stability analysis method for ELECTRE-TRI[C]//Kiker G A, Linkov I. Environmental Security in Harbors and Coastal Areas. Berlin, Germany:Springer, 2007:217-231. [10] Tervonen T, Figueira J R, Lahdelma R, et al. Towards robust ELECTRE Ⅲ with simulation:theory and software of SMAA-Ⅲ[J]. European Journal of Operational Research, under review, 2007. [11] Lahdelma R, Salminen P. Stochastic multicriteria acceptability analysis using the data envelopment model[J]. European Journal of Operational Research, 2006, 170(1):241-252. DOI:10.1016/j.ejor.2004.07.040. [12] Lahdelma R, Salminen P. Prospect theory and stochastic multicriteria acceptability analysis (SMAA)[J]. Omega, 2009, 37(5):961-971. DOI:10.1016/j.omega.2008.09.001. [13] Corrente S, Figueira J R, Greco S. The SMAA-PROMETHEE method[J]. European Journal of Operational Research, 2014, 239(2):514-522. DOI:10.1016/j.ejor.2014.05.026. [14] Tervonen T, Lahdelma R. Implementing stochastic multicriteria acceptability analysis[J]. European Journal of Operational Research, 2007, 178(2):500-513. DOI:10.1016/j.ejor.2005.12.037. [15] Hokkanen J, Lahdelma R, Miettinen K, et al. Determining the implementation order of a general plan by using a multicriteria method[J]. Journal of Multi-Criteria Decision Analysis, 1998, 7(5):273-284. DOI:10.1002/(SICI)1099-1360(199809)7:5<273:AID-MCDA198>3.0.CO;2-1. [16] Hokkanen J, Lahdelma R, Salminen P. A multiple criteria decision model for analyzing and choosing among different development patterns for the Helsinki cargo harbor[J]. Socio Economic Planning Sciences, 1999, 33(1):1-23. DOI:10.1016/S0038-0121(98)00007-X. [17] Hokkanen J, Lahdelma R, Salminen P. Multicriteria decision support in a technology competition for cleaning polluted soil in Helsinki[J]. Journal of Environmental Management, 2000, 60(4):339-348. DOI:10.1006/jema.2000.0389. [18] Lahdelma R, Salminen P, Hokkanen J. Locating a waste treatment facility by using stochastic multicriteria acceptability analysis with ordinal criteria[J]. European Journal of Operational Research, 2002, 142(2):345-356. DOI:10.1016/S0377-2217(01)00303-4. [19] Tervonen T, Hakonen H, Lahdelma R. Elevator planning with stochastic multicriteria acceptability analysis[J]. Omega, 2008, 36(3):352-362. DOI:10.1016/j.omega.2006.04.017. [20] Kangas J, Hokkanen J, Kangas A S, et al. Applying stochastic multicriteria acceptability analysis to forest ecosystem management with both cardinal and ordinal criteria[J]. Forest Science, 2003, 49(6):928-937. [21] Xia Q, Hua Z S, Song S L. Location selection of distribution centers based on SMAA[J]. Lecture Notes in Electrical Engineering, 2014, 273(1):213-220. DOI:10.1007/978-3-642-40640-9-28. [22] Zhu F L, Zhong P G, Wu Y N, et al. SMAA-based stochastic multi-criteria decision making for reservoir flood control operation[J]. Stochastic Environmental Research and Risk Assessment, 2017, 31(6):1485-1497. DOI:10.1007/s00477-016-1253-3. [23] Lahdelma R, Makkonen S, Salminen P. Multivariate gaussian criteria in SMAA[J]. European Journal of Operational Research, 2006, 170(3):957-970. DOI:10.1016/j.ejor.2004.08.022. [24] Genest C, Favre A C. Everything you always wanted to know about copula modeling but were afraid to ask[J]. Journal of Hydrologic Engineering, 2007, 12(4):347-368. DOI:10.1061/(asce)1084-0699(2007)12:4(347). [25] Genest C, Rémillard B, Beaudoin D. Goodness-of-fit tests for copulas:a review and a power study[J]. Insurance Mathematics and Economics, 2009, 44(2):199-213. DOI:10.1016/j.insmatheco.2007.10.005. [26] Joe H. Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters[J]. Lecture Notes-Monograph Series, 1996, 28:120-141. [27] Bedford T, Cooke R M. Probability density decomposition for conditionally dependent random variables modeled by vines[J]. Annals of Mathematics and Artificial Intelligence, 2001, 32(1):245-268. DOI:10.1023/A:1016725902970. [28] Aas K, Czado C, Frigessi A, et al. Pair-copula constructions of multiple dependence[J]. Insurance Mathematics and Economics, 2009, 44(2):182-198. DOI:10.1016/j.insmatheco.2007.02.001. [29] Sklar A. Fonctions de répartition à n dimensions et leurs marges[J]. Publications de l'Institut de Statistique de l'Uni-versité de Paris, 1959(8):229-231. [30] Genest C, Rivest L P. Statistical inference procedures for bivariate archimedean copulas[J]. Journal of the American Statistical Association, 1993, 88(423):1034-1043. DOI:10.1080/01621459.1993.10476372. [31] Bedford T, Cooke R M. Vines-a new graphical model for dependent random variables[J]. The Annals of Statistics, 2002, 30(4):1031-1068. DOI:10.1214/AOS[WTB4]% 2F1031689016. [32] 叶五一,郭人榛,缪柏其.基于R藤copula变点模型的金砖四国金融传染性与稳定性检验[J].中国科学技术大学学报, 2018, 48(8):655-666. DOI:10.3969/j.issn.0253-2778.2018.08.009. [33] Diβmann J F. Statistical inference for regular vines and application[D]. Munich, Germany:Technische Universität München, 2010. [34] Joe H, Kurowicka D. Dependence modeling:vine copula handbook[M]. Singapore:World Scientific, 2010. DOI:10.1142/7699. |