Journal of University of Chinese Academy of Sciences ›› 2022, Vol. 39 ›› Issue (4): 490-501.DOI: 10.7523/j.ucas.2021.0010
• Research Articles • Previous Articles Next Articles
ZHANG Xiaoping1, GAO Shanshan1, CHEN Mingxing1,2, ZHAO Yanyan1
Received:
2020-11-09
Revised:
2021-02-05
Online:
2022-07-15
CLC Number:
ZHANG Xiaoping, GAO Shanshan, CHEN Mingxing, ZHAO Yanyan. Hot spots tracking of nighttime light data application in research of urbanization and its resource and environmental effects[J]. Journal of University of Chinese Academy of Sciences, 2022, 39(4): 490-501.
Add to citation manager EndNote|Ris|BibTeX
[1] 国家统计局.中国统计摘要2020[M].北京:中国统计出版社,2020. [2] 王鹤饶,郑新奇,袁涛. DMSP/OLS数据应用研究综述[J].地理科学进展, 2012, 31(1):11-19. [3] 杨眉,王世新,周艺,等. DMSP/OLS夜间灯光数据应用研究综述[J].遥感技术与应用, 2011, 26(1):45-51. [4] Huang Q X, Yang X, Gao B, et al. Application of DMSP/OLS nighttime light images:a meta-analysis and a systematic literature review[J]. Remote Sensing, 2014, 6(8):6844-6866.DOI:10.3390/rs6086844. [5] Li X C, Zhou Y Y. Urban mapping using DMSP/OLS stable night-time light:a review[J]. International Journal of Remote Sensing, 2017, 38(21):6030-6046.DOI:10.1080/01431161.2016.1274451. [6] Bennett M M, Smith L C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics[J]. Remote Sensing of Environment, 2017, 192:176-197.DOI:10.1016/j.rse.2017.01.005. [7] 陈颖彪,郑子豪,吴志峰,等.夜间灯光遥感数据应用综述和展望[J].地理科学进展, 2019, 38(2):205-223. [8] 赵敏,程维明.基于DMSP/OLS夜间灯光数据的城市空间扩展研究综述[J].测绘与空间地理信息, 2015, 38(3):64-68.DOI:10.3969/j.issn.1672-5867.2015.03.021. [9] 肖东升,杨松.基于夜间灯光数据的人口空间分布研究综述[J].国土资源遥感, 2019, 31(3):10-19.DOI:10.6046/gtzyyg.2019.03.02. [10] Zhang G, Li L T, Jiang Y H, et al. On-orbit relative radiometric calibration of the night-time sensor of the LuoJia1-01 satellite[J]. Sensors, 2018, 18(12):4225.DOI:10.3390/s18124225. [11] 陈明星.城市化领域的研究进展和科学问题[J].地理研究, 2015, 34(4):614-630.DOI:10.11821/dlyj201504002. [12] Elvidge C, Baugh K, Hobson V, et al. Satellite inventory of human settlements using nocturnal radiation emissions:a contribution for the global toolchest[J]. Global Change Biology, 1997, 3(5):387-395.DOI:10.1046/j.1365-2486.1997.00115.x. [13] Henderson M, Yeh E T, Gong P, et al. Validation of urban boundaries derived from global night-time satellite imagery[J]. International Journal of Remote Sensing, 2003, 24(3):595-609.DOI:10.1080/01431160304982. [14] Imhoff M L, Lawrence W T, Stutzer D C, et al. A technique for using composite DMSP/OLS "city lights" satellite data to map urban area[J]. Remote Sensing of Environment, 1997, 61(3):361-370.DOI:10.1016/s0034-4257(97)00046-1. [15] Shao Z F, Liu C. The integrated use of DMSP-OLS nighttime light and MODIS data for monitoring large-scale impervious surface dynamics:a case study in the Yangtze River Delta[J]. Remote Sensing, 2014, 6(10):9359-9378.DOI:10.3390/rs6109359. [16] Sutton P. Modeling population density with night-time satellite imagery and GIS[J]. Computers, Environment and Urban Systems, 1997, 21(3/4):227-244.DOI:10.1016/s0198-9715(97)01005-3. [17] Elvidge C D, Tuttle B T, Sutton P C, et al. Global distribution and density of constructed impervious surfaces[J]. Sensors (Basel), 2007, 7(9):1962-1979.DOI:10.3390/s7091962. [18] Sutton P C. A scale-adjusted measure of "urban sprawl" using nighttime satellite imagery[J]. Remote Sensing of Environment, 2003, 86(3):353-369.DOI:10.1016/s0034-4257(03)00078-6. [19] Zhai W X, Han B, Cheng C Q. Evaluation of Luojia 1-01 nighttime light imagery for built-up urban area extraction:a case study of 16 cities in China[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10):1802-1806.DOI:10.1109/LGRS.2019.2955496. [20] Wang C X, Chen Z Q, Yang C S, et al. Analyzing parcel-level relationships between Luojia 1-01 nighttime light intensity and artificial surface features across Shanghai, China:a comparison with NPP-VIIRS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 85:101989.DOI:10.1016/j.jag.2019.101989. [21] Ou J P, Liu X P, Liu P H, et al. Evaluation of Luojia 1-01 nighttime light imagery for impervious surface detection:a comparison with NPP-VIIRS nighttime light data[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 81:1-12.DOI:10.1016/j.jag.2019.04.017. [22] Xiao P F, Wang X H, Feng X Z, et al. Detecting China's urban expansion over the past three decades using nighttime light data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(10):4095-4106.DOI:10.1109/JSTARS.2014.2302855. [23] Zhang Q, Wang P, Chen H, et al. A novel method for urban area extraction from VIIRS DNB and MODIS NDVI data:a case study of Chinese cities[J]. International Journal of Remote Sensing, 2017, 38(21):6094-6109.DOI:10.1080/01431161.2017.1339927. [24] Dou Y Y, Liu Z F, He C Y, et al. Urban land extraction using VIIRS nighttime light data:an evaluation of three popular methods[J]. Remote Sensing, 2017, 9(2):175.DOI:10.3390/rs9020175. [25] Cao K, Guo H, Zhang Y. Comparison of approaches for urban functional zones classification based on multi-source geospatial data:a case study in Yuzhong district, Chongqing, China[J]. Sustainability, 2019, 11(3):660.DOI:10.3390/su11030660. [26] Chen Z Q, Yu B L, Zhou Y Y, et al. Mapping global urban areas from 2000 to 2012 using time-series nighttime light data and MODIS products[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(4):1143-1153.DOI:10.1109/JSTARS.2019.2900457. [27] 何春阳,李景刚,陈晋,等.基于夜间灯光数据的环渤海地区城市化过程[J].地理学报, 2005, 60(3):409-417.DOI:10.3321/j.issn:0375-5444.2005.03.007. [28] Lu H M, Zhang M L, Sun W W, et al. Expansion analysis of Yangtze River Delta urban agglomeration using DMSP/OLS nighttime light imagery for 1993 to 2012[J]. ISPRS International Journal of Geo-Information, 2018, 7(2):52.DOI:10.3390/ijgi7020052. [29] Chen Z Q, Yu B L, Song W, et al. A new approach for detecting urban centers and their spatial structure with nighttime light remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11):6305-6319.DOI:10.1109/TGRS.2017.2725917. [30] Cai J X, Huang B, Song Y M. Using multi-source geospatial big data to identify the structure of polycentric cities[J]. Remote Sensing of Environment, 2017, 202:210-221.DOI:10.1016/j.rse.2017.06.039. [31] Zhao X, Li X, Zhou Y Y, et al. Analyzing urban spatial connectivity using night light observations:a case study of three representative urban agglomerations in China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:1097-1108.DOI:10.1109/JSTARS.2020.2980514. [32] 陈昕,彭建,刘焱序,等.基于DMSP/OLS夜间灯光数据的京津冀地区城市空间扩展与空间关联测度[J].地理研究, 2018, 37(5):898-909.DOI:10.11821/dlyj201805004. [33] 廖兵,魏康霞,宋巍巍. DMSP/OLS夜间灯光数据在城镇体系空间格局研究中的应用与评价:以近16年江西省间城镇空间格局为例[J].长江流域资源与环境, 2012, 21(11):1295-1300. [34] 范俊甫,马廷,周成虎,等. 1992-2010年基于DMSP-OLS图像的环渤海城市群空间格局变化分析[J].地球信息科学学报, 2013, 15(2):280-288.DOI:10.3724/SP.J.1047.2013.00280. [35] Sutton P, Roberts D, Elvidge C, et al. A comparison of nighttime satellite imagery and population density for the continental United States[J]. Photogrammetric Engineering and Remote Sensing, 1997, 63(11):1303-1313. [36] Briggs D J, Gulliver J, Fecht D, et al. Dasymetric modelling of small-area population distribution using land cover and light emissions data[J]. Remote Sensing of Environment, 2007, 108(4):451-466.DOI:10.1016/j.rse.2006.11.020. [37] Zhao S, Liu Y X, Zhang R, et al. China's population spatialization based on three machine learning models[J]. Journal of Cleaner Production, 2020, 256:120644.DOI:10.1016/j.jclepro.2020.120644. [38] Yang J S, Liu S, Wang Y D, et al. The assessment and analysis of the phenomenon of vacancy within Wuhan city using multi-source datasets[J]. Journal of Geo-Information Science, 2020, 22(5):997-1007. [39] Tan Z R, Wei D L, Yin Z X. Housing vacancy rate in major cities in China:perspectives from nighttime light data[J]. Complexity, 2020:5104578.DOI:10.1155/2020/5104578. [40] Liu X C, Sweeney J. Modelling the impact of urban form on household energy demand and related CO2 emissions in the Greater Dublin Region[J]. Energy Policy, 2012, 46:359-369.DOI:10.1016/j.enpol.2012.03.070. [41] Li X M, Zhou W Q. Dasymetric mapping of urban population in China based on radiance corrected DMSP-OLS nighttime light and land cover data[J]. Science of the Total Environment, 2018, 643:1248-1256.DOI:10.1016/j.scitotenv.2018.06.244. [42] Pavía J M, Cantarino I. Can dasymetric mapping significantly improve population data reallocation in a dense urban area?[J]. Geographical Analysis, 2017, 49(2):155-174.DOI:10.1111/gean.12112. [43] Sun W C, Zhang X, Wang N, et al. Estimating population density using DMSP-OLS night-time imagery and land cover data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6):2674-2684.DOI:10.1109/JSTARS.2017.2703878. [44] 卓莉,陈晋,史培军,等.基于夜间灯光数据的中国人口密度模拟[J].地理学报, 2005, 60(2):266-276.DOI:10.3321/j.issn:0375-5444.2005.02.010. [45] Elvidge C D, Baugh K E, Kihn E A, et al. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption[J]. International Journal of Remote Sensing, 1997, 18(6):1373-1379.DOI:10.1080/014311697218485. [46] Henderson J V, Storeygard A, Weil D N. Measuring economic growth from outer space[J]. The American Economic Review, 2012, 102(2):994-1028.DOI:10.1257/aer.102.2.994. [47] Sun J, Di L P, Sun Z H, et al. Estimation of GDP using deep learning with NPP-VIIRS imagery and land cover data at the County level in CONUS[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:1400-1415.DOI:10.1109/JSTARS.2020.2983331. [48] Li G E, Chang L Y, Liu X J, et al. Monitoring the spatiotemporal dynamics of poor counties in China:Implications for global sustainable development goals[J]. Journal of Cleaner Production, 2019, 227:392-404.DOI:10.1016/j.jclepro.2019.04.135 [49] 李兵,龚昭,刘思勤,等."一带一路"国家投资适宜性研究:基于夜间灯光数据的视角[J].世界经济文汇, 2019(3):18-37. [50] Lo C P. Modeling the population of China using DMSP operational linescan system nighttime data[J]. Photogrammetric Engineering and Remote Sensing, 2001, 67(9):1037-1047. [51] 吴健生,牛妍,彭建,等.基于DMSP/OLS夜间灯光数据的1995-2009年中国地级市能源消费动态[J].地理研究, 2014, 33(4):625-634. [52] Li S Y, Cheng L, Liu X Q, et al. City type-oriented modeling electric power consumption in China using NPP-VIIRS nighttime stable light data[J]. Energy, 2019, 189:116040.DOI:10.1016/j.energy.2019.116040. [53] 李熙,薛翔宇.基于波士顿矩阵的夜光遥感电力消费估算方法[J].武汉大学学报.信息科学版, 2018, 43(12):1994-2002.DOI:10.13203/j.whugis20180334. [54] Jasiński T. Modeling electricity consumption using nighttime light images and artificial neural networks[J]. Energy, 2019, 179:831-842.DOI:10.1016/j.energy.2019.04.221 [55] Zhao J C, Chen Y L, Ji G X, et al. Residential carbon dioxide emissions at the urban scale for county-level cities in China:a comparative study of nighttime light data[J]. Journal of Cleaner Production, 2018, 180:198-209.DOI:10.1016/j.jclepro.2018.01.131 [56] Ghosh T, Elvidge C D, Sutton P C, et al. Creating a global grid of distributed fossil fuel CO2 emissions from nighttime satellite imagery[J]. Energies, 2010, 3(12):1895-1913.DOI:10.3390/en3121895. [57] Oda T, Maksyutov S. A very high-resolution (1km×1km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights[J]. Atmospheric Chemistry and Physics, 2011, 11(2):543-556.DOI:10.5194/acp-11-543-2011. [58] Lyu Q, Liu H B, Wang J T, et al. Multiscale analysis on spatiotemporal dynamics of energy consumption CO2 emissions in China:utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets[J]. Science of the Total Environment, 2020, 703:134394.DOI:10.1016/j.scitotenv.2019.134394. [59] 赵笑然,石汉青,杨平吕,等. NPP卫星VIIRS微光资料反演夜间PM2.5质量浓度[J].遥感学报, 2017, 21(2):291-299. [60] Wang J, Aegerter C, Xu X G, et al. Potential application of VIIRS day/night band for monitoring nighttime surface PM2.5 air quality from space[J]. Atmospheric Environment, 2016, 124:55-63.DOI:10.1016/j.atmosenv.2015.11.013. [61] Lin G, Fu J Y, Jiang D, et al. Spatio-temporal variation of PM2.5 concentrations and their relationship with geographic and socioeconomic factors in China[J]. International Journal of Environmental Research and Public Health, 2014, 11(1):173-186.DOI:10.3390/ijerph110100173. [62] Shi K F, Shen J W, Wang L, et al. A multiscale analysis of the effect of urban expansion on PM2.5 concentrations in China:evidence from multisource remote sensing and statistical data[J]. Building and Environment, 2020, 174:106778.DOI:10.1016/j.buildenv.2020.106778. [63] 祝芸依,郭亮,张秋圆.基于DMSP/OLS数据湖南省城市发展与PM2.5时空分布研究//2019中国城市规划年会论文集.北京:中国建筑工业出版社, 2019:293-304. [64] Shi K F, Li Y, Chen Y, et al. How does the urban form-PM2.5 concentration relationship change seasonally in Chinese cities?A comparative analysis between national and urban agglomeration scales[J]. Journal of Cleaner Production, 2019, 239:118088.DOI:10.1016/j.jclepro.2019.118088. [65] Ji G X, Tian L, Zhao J C, et al. Detecting spatiotemporal dynamics of PM2.5 emission data in China using DMSP-OLS nighttime stable light data[J]. Journal of Cleaner Production, 2019, 209:363-370.DOI:10.1016/j.jclepro.2018.10.285. [66] Ji G X, Zhao J C, Yang X, et al. Exploring China's 21-year PM10 emissions spatiotemporal variations by DMSP-OLS nighttime stable light data[J]. Atmospheric Environment, 2018, 191:132-141.DOI:10.1016/j.atmosenv.2018.07.045. [67] 罗鑫玥,陈明星.城镇化对气候变化影响的研究进展[J].地球科学进展, 2019, 34(9):984-997. [68] Li J F, Wang F F, Fu Y C, et al. A novel SUHI referenced estimation method for multicenters urban agglomeration using DMSP/OLS nighttime light data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:1416-1425.DOI:10.1109/JSTARS.2020.2981285. [69] 谢志清,杜银,曾燕,等.长江三角洲城市带扩展对区域温度变化的影响[J].地理学报, 2007, 62(7):717-727. [70] 刘勇洪,房小怡,张硕,等.京津冀城市群热岛定量评估[J].生态学报, 2017, 37(17):5818-5835. [71] 杨续超,陈锋,祝炜平,等.城市化对浙江省夏季极端高温事件的影响[J].热带气象学报, 2014, 30(4):719-726.DOI:10.3969/j.issn.1004-4965.2014.04.012. [72] Yang J, Wang Y C, Xiu C L, et al. Optimizing local climate zones to mitigate urban heat island effect in human settlements[J]. Journal of Cleaner Production, 2020, 275:123767.DOI:10.1016/j.jclepro.2020.123767. [73] Hu K J, Yang X C, Zhong J M, et al. Spatially explicit mapping of heat health risk utilizing environmental and socioeconomic data[J]. Environmental Science&Technology, 2017, 51(3):1498-1507.DOI:10.1021/acs.est.6b04355. [74] 杨智威,陈颖彪,吴志峰,等.粤港澳大湾区城市热岛空间格局及影响因子多元建模[J].资源科学, 2019, 41(6):1154-1166. [75] Hu D Y, Chen S S, Duan F Z. Estimation of the anthropogenic heat flux distribution in Beijing-Tianjin-Hebei region based on Suomi-NPP/VIIRS nighttime light image//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). July 23-28, 2017, Fort Worth, TX, USA. IEEE, 2017:4012-4015.DOI:10.1109/IGARSS.2017.8127880. [76] Sun Y R, Wang S H, Wang Y. Estimating local-scale urban heat island intensity using nighttime light satellite imageries[J]. Sustainable Cities and Society, 2020, 57:102125.DOI:10.1016/j.scs.2020.102125. [77] 向炀,周志翔.基于地理探测器的城市热岛驱动因素分析:以武汉市为例[J].长江流域资源与环境, 2020, 29(8):1768-1779. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Journal of University of Chinese Academy of Sciences
Support by Beijing Magtech Co.ltd support@magtech.com.cn