[1] 胡建生,左桂忠,王亮,等. 磁约束核聚变装置等离子体与壁相互作用研究简述[J]. 中国科学技术大学学报, 2020, 50(9):1193-1217.DOI:10.3969/j.issn.0253-2778.2020.09.001. [2] Mazzitelli G, Apicella M L, Frigione D, et al. FTU results with a liquid lithium limiter[J]. Nuclear Fusion, 2011, 51(7):073006.DOI:10.1088/0029-5515/51/7/073006. [3] Chopra O K, Smith D L. Influence of temperature and lithium purity on corrosion of ferrous alloys in a flowing lithium environment[J]. Journal of Nuclear Materials, 1986, 141/142/143:584-591.DOI:10.1016/0022-3115(86)90058-9. [4] Chopra O K, Smith D L. Compatibility of ferritic steels in forced circulation lithium and Pb-17Li systems[J]. Journal of Nuclear Materials, 1988, 155/156/157:715-721.DOI:10.1016/0022-3115(88)90402-3. [5] Flament T, Tortorelli P, Coen V, et al. Compatibility of materials in fusion first wall and blanket structures cooled by liquid metals[J]. Journal of Nuclear Materials, 1992, 191/192/193/194:132-138.DOI:10.1016/s0022-3115(09)80020-2. [6] Gan X L, Xiao S F, Deng H Q, et al. Clustering of Fe atoms in liquid Li and its effect on the viscosity of liquid Li[J]. Nuclear Fusion, 2016, 56(4):046004.DOI:10.1088/0029-5515/56/4/046004. [7] Lou Z Y, Yang M L. Molecular dynamics simulations on the shear viscosity of Al2O3 nanofluids[J]. Computers & Fluids, 2015, 117:17-23.DOI:10.1016/j.compfluid.2015.05.006. [8] Rudyak V Y, Krasnolutskii S L. Simulation of the nanofluid viscosity coefficient by the molecular dynamics method[J]. Technical Physics, 2015, 60(6):798-804.DOI:10.1134/s1063784215060237. [9] Lu G, Duan Y Y, Wang X D. Surface tension, viscosity, and rheology of water-based nanofluids:a microscopic interpretation on the molecular level[J]. Journal of Nanoparticle Research, 2014, 16(9):1-11.DOI:10.1007/s11051-014-2564-2. [10] Gan X L, Xiao S F, Deng H Q, et al. Atomistic simulations of the Fe(001)-Li solid-liquid interface[J]. Fusion Engineering and Design, 2014, 89(12):2894-2901.DOI:10.1016/j.fusengdes.2014.06.018. [11] Hoover W G. Canonical dynamics:equilibrium phase-space distributions[J]. Physical Review A, General Physics, 1985, 31(3):1695-1697.DOI:10.1103/physreva.31.1695. [12] Nosé S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1):511-519.DOI:10.1063/1.447334. [13] Parrinello M, Rahman A. Crystal structure and pair potentials:a molecular-dynamics study[J]. Physical Review Letters, 1980, 45(14):1196.DOI:10.1103/physrevlett.45. [14] Mouas M, Gasser J G, Hellal S, et al. Diffusion and viscosity of liquid tin:Green-Kubo relationship-based calculations from molecular dynamics simulations[J]. The Journal of Chemical Physics, 2012, 136(9):094501.DOI:10.1063/1.3687243. [15] Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity[J]. The Journal of Chemical Physics, 1997, 106(14):6082-6085.DOI:10.1063/1.473271. [16] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1):1-19.DOI:10.1006/jcph.1995.1039. [17] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO:the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1):015012.DOI:10.1088/0965-0393/18/1/015012. [18] Ohse R W. Handbook of thermodynamic and transport properties of alkali metals[M]. Oxford:Blackwell Scientific Publications, 1985. [19] Shpilrain E E, Soldaten Y A, Yakimovi K A, et al. Experimental investigation of thermal and electrical properties of liquid alkali metals at high temperatures[J]. High Temperature, 1965, 3(6):870. [20] Novikov I I, Soloviev A N, Khabakhnasheva E M, et al. The heat-transfer and high-temperature properties of liquid alkali metals[J]. Journal of Nuclear Energy (1954), 1957, 4(3):387-408.DOI:10.1016/0891-3919(57)90218-8. [21] Blagoveshchenskii N M, Novikov A G, Savostin V V. Self-diffusion in liquid lithium from coherent quasielastic neutron scattering[J]. Physica B:Condensed Matter, 2012, 407(23):4567-4569.DOI:1016/j.physb.2012.07.027. [22] Wang Z H, Ni M J. Self-diffusion coefficient study of liquid lithium[J]. Heat and Mass Transfer, 2012, 48(2):253-257.DOI:10.1007/s00231-011-0874-9. [23] He Y R, Jin Y, Chen H S, et al. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2007, 50(11/12):2272-2281.DOI:10.1016/j.i.jheatmasstransfer.2006.10.024. [24] Cui W Z, Shen Z J, Yang J G, et al. Effect of chaotic movements of nanoparticles for nanofluid heat transfer augmentation by molecular dynamics simulation[J]. Applied Thermal Engineering, 2015, 76:261-271.DOI:10.1016/j.applthermaleng.2014.11.030. [25] Zwanzig R. On the relation between self-diffusion and viscosity of liquids[J]. The Journal of Chemical Physics, 1983, 79(9):4507-4508.DOI:10.1063/1.446338. [26] Chandrasekar M, Suresh S, Chandra Bose A. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid[J]. Experimental Thermal and Fluid Science, 2010, 34(2):210-216.DOI:10.1016/j.expthenmflusci.2009.10.022. [27] Mano J F, Pereira E. Data analysis with the vogel-fulcher-tammann-Hesse equation[J]. The Journal of Physical Chemistry A, 2004, 108(49):10824-10833.DOI:10.1021/jp0484433. [28] Einstein A. A new determination of the molecular dimensions[J]. Annalen Der Physik, 1911, 339(3):591-592. [29] Rudyak V Y, Minakov A V. Thermophysical properties of nanofluids[J]. The European Physical Journal E, 2018, 41(1):15.DOI:10.1140/epje/i2018-11616-9. [30] Oliver D R, Ward S G. Relationship between relative viscosity and volume concentration of stable suspensions of spherical particles[J]. Nature, 1953, 171(4348):396-397.DOI:10.1038/17139660. [31] Avsec J, Oblak M. The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics[J]. International Journal of Heat and Mass Transfer, 2007, 50(21/22):4331-4341.DOI:10.1016/j.ijheatmasstransfer.2007.01.064. |