[1] Brent A D, Voller V R, Reid K J. Enthalpy-porosity technique for modeling convection-diffusion phase change:application to the melting of a pure metal[J]. Numerical Heat Transfer, 1988, 13(3):297-318.DOI:10.1080/10407788808913615. [2] Hartmann D L, Moy L A, Fu Q. Tropical convection and the energy balance at the top of the atmosphere[J]. Journal of Climate, 2001, 14(24):4495-4511. [3] McKenzie D P, Roberts J M, Weiss N O. Convection in the earth's mantle:towards a numerical simulation[J]. Journal of Fluid Mechanics, 1974, 62(3):465. [4] Bénard H. Les tourbillons cellulaires dans une nappe liquid[J]. Revue Générale des Sciences Pures et Appliquées, 1900, 11:1261-1271. [5] Rayleigh L. LIX. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1916, 32(192):529-546.DOI:10.1080/14786441608635602. [6] Chandrasekhar S. Hydrodynamic and hydromagnetic stability[M]. New York:Oxford University Press, 1961. [7] Oberbeck A. Ueber Die Wärmeleitung der Flüssigkeiten Bei berücksichtigung der strömungen infolge von temperaturdifferenzen[J]. Annalen Der Physik Und Chemie, 1879, 243(6):271-292. [8] Grossmann S, Lohse D. Scaling in thermal convection:a unifying theory[J]. Journal of Fluid Mechanics, 2000, 407:27-56.DOI:10.1017/50022112099007545. [9] Grossmann S, Lohse D. Thermal convection for large Prandtl numbers[J]. Physical Review Letters, 2001, 86(15):3316-3319.DOI:10.1103/PhysRevLett.86.3316. [10] Grossmann S, Lohse D. Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 66(1 pt 2):016305.DOI:10.1103/PhysRevE.66.016305. [11] Zhou Q, Xia K Q. Physical and geometrical properties of thermal plumes in turbulent Rayleigh-Bénard convection[J]. New Journal of Physics, 2010, 12(7):075006.DOI:10.1088/1367-2630/12/7/075006. [12] 周全, 夏克青. Rayleigh-Bénard湍流热对流研究的进展、现状及展望[J]. 力学进展, 2012, 42(3):231-251.DOI:10.6052/1000-0992/11-163. [13] Sun C, Xia K Q. Scaling of the Reynolds number in turbulent thermal convection[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(6 Pt 2):067302.DOI:10.1103/PhysRevE.72.067302. [14] Yanagisawa T, Yamagishi Y, Hamano Y, et al. Structure of large-scale flows and their oscillation in the thermal convection of liquid gallium[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(1 Pt 2):016320.DOI:10.1103/PhysRevE.82.016320. [15] Busse F H,Clever R M. Stability of convection rolls in the presence of a vertical magnetic field[J]. The Physics of Fluids, 1982, 25(6):931-935.DOI:10.1063/1.863845. [16] 荣升. 导电流体热对流中磁场的致稳作用[J]. 力学学报, 1993, 25(6):658-664. [17] Busse F H. The oscillatory instability of convection rolls in a low Prandtl number fluid[J]. Journal of Fluid Mechanics, 1972, 52(1):97-112. [18] Clever R M, Busse F H. Transition to time-dependent convection[J]. Journal of Fluid Mechanics, 1974, 65(4):625-645. [19] Fauve S, Laroche C, Libchaber A, et al. Effect of a horizontal magnetic field on convective instabilities in mercury[J]. Journal De Physique Lettres, 1981, 42(21):455-457. [20] Libchaber A, Fauve S, Laroche C. Two-parameter study of the routes to chaos[J]. Physica D:Nonlinear Phenomena, 1983, 7(1/2/3):73-84.DOI:10.1016/0167-2789(83)90117-3. [21] Lehnert B, Little N C. Experiments on the effect of inhomogeneity and obliquity of a magnetic field in inhibiting convection[J]. Tellus, 1957, 9(1):97-103.DOI:10.3402/tellusa.v9il.9063. [22] Yu X X, Zhang J, Ni M J. Numerical simulation of the Rayleigh-Bénard convection under the influence of magnetic fields[J]. International Journal of Heat and Mass Transfer, 2018, 120:1118-1131.DOI:10.1016/j.ijheatmasstransfer.2017.11.151. [23] Horanyi S, Krebs L, Müller U. Turbulent Rayleigh-Bénard convection in low Prandtl-number fluids[J]. International Journal of Heat and Mass Transfer, 1999, 42(21):3983-4003.DOI:10.1016/s0017-9310(99)00059-9. [24] Burr U, Müller U. Rayleigh-Bénard convection in liquid metal layers under the influence of a vertical magnetic field[J]. Physics of Fluids, 2001, 13(11):3247-3257.DOI:10.1063/1.1404385. [25] Aurnou J M, Olson P L. Experiments on Rayleigh-Bénard convection, magnetoconvection and rotating magnetoconvection in liquid gallium[J]. Journal of Fluid Mechanics, 2001, 430:283-307. [26] Takeshita T, Segawa T, Glazier J A, et al. Thermal turbulence in mercury[J]. Physical Review Letters, 1996, 76(9):1465-1468.DOI:10.1103/PhysRevLett.76.1465. [27] 周仲凯,王增辉,陈然. 强磁场下液态金属在竖直平板外的自由对流换热[J]. 中国科学院大学学报, 2020, 37(1):13-19.DOI:10.7523/j.issn.2095-6134.2020.01.003. [28] Yanagisawa T, Yamagishi Y, Hamano Y, et al. Detailed investigation of thermal convection in a liquid metal under a horizontal magnetic field:Suppression of oscillatory flow observed by velocity profiles[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(5 pt 2):056306.DOI:10.1103/PhysRevE.82.056306. [29] Yanagisawa T, Yamagishi Y, Hamano Y, et al. Spontaneous flow reversals in Rayleigh-Bénard convection of a liquid metal[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 83(3 Pt 2):036307.DOI:10.1103/PhyRevE.83.036307. [30] Vogt T, Horn S, Grannan A M, et al. Jump rope vortex in liquid metal convection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(50):12674-12679.DOI:10.1073/pnas.1812260115. [31] Vogt T, Ishimi W, Yanagisawa T, et al. Transition between quasi-two-dimensional and three-dimensional Rayleigh-Bénard convection in a horizontal magnetic field[J]. Physical Review Fluids, 2018, 3:013503.DOI:10.1103/physrevfluids.3.013503. [32] Akashi M, Yanagisawa T, Tasaka Y, et al. Transition from convection rolls to large-scale cellular structures in turbulent Rayleigh-Bénard convection in a liquid metal layer[J]. Physical Review Fluids, 2019, 4(3):033501.DOI:10.1103/PhysRevFluids.4.033501. [33] Zürner T, Schindler F, Vogt T, et al. Combined measurement of velocity and temperature in liquid metal convection[J]. Journal of Fluid Mechanics, 2019, 876:1108-1128.DOI:10.1017/jfm2019.556. [34] Lim Z L, Chong K L, Ding G Y, et al. Quasistatic magnetoconvection:Heat transport enhancement and boundary layer crossing[J]. Journal of Fluid Mechanics, 2019, 870:519-542.DOI:10.1017/jfm.2019.232. [35] Shang X D, Xia K Q. Scaling of the velocity power spectra in turbulent thermal convection[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2001, 64(6 Pt 2):065301.DOI:10.1103/PhysRevE.64.065301. |